Differential Inductive Sensing System for Truly Contactless Measuring of Liquids′ Electromagnetic Properties in Tubing
<p>Schematic illustration of a differential transformer for measuring the electromagnetic properties of a sample. The differential transformer consists of three coils located on a ferrite core. The connection of the coils is illustrated in the equivalent circuit of the unloaded differential transformer on the right-hand side.</p> "> Figure 2
<p>Photography of the used differential transformer made of three printed circuit board (PCB) coils. The differential connection of <span class="html-italic">L<sub>Sec1</sub></span> and <span class="html-italic">L<sub>Sec2</sub></span> is realized via two wires (not seen).</p> "> Figure 3
<p>(<b>a</b>) Illustration of the CST-EM Studio simulation model of the differential transformer without sample. Small white cones indicate the winding direction of the coils. As can be seen, <span class="html-italic">L<sub>Sec1</sub></span> and <span class="html-italic">L<sub>Sec2</sub></span> have an opposite winding direction. The distance <span class="html-italic">d<sub>PCB</sub></span> between the coils and the height <span class="html-italic">h<sub>PCB</sub></span> of the PCB coils corresponds to the real PCB differential transformer from <a href="#sec2dot1-sensors-21-05535" class="html-sec">Section 2.1</a>. (<b>b</b>) Cross-section through the <span class="html-italic">y-z</span>-plane of the simulation model. The radii of the coils and the radii of the ferrite core <span class="html-italic">r<sub>Fe</sub></span> corresponds to the radii from the experimental PCB differential transformer. The coordinate system is defined with the <span class="html-italic">z</span>-axis pointing longitudinally to the ferrite core. The <span class="html-italic">x</span>- and <span class="html-italic">y</span>-axes run radially to the ferrite core. The relative permeability <span class="html-italic">µ<sub>r</sub></span> of the ferrite core is 300. The number of turns for <span class="html-italic">L<sub>P</sub></span>, <span class="html-italic">L<sub>Sec1</sub></span> and <span class="html-italic">L<sub>Sec2</sub></span> corresponds to the number of turns from <a href="#sec2dot1-sensors-21-05535" class="html-sec">Section 2.1</a>. The same applies to the relative permeability <span class="html-italic">µ<sub>r</sub></span> of the ferrite core.</p> "> Figure 4
<p>(<b>a</b>) Numerical CST-EM Studio model for simulating the impact of <span class="html-italic">n<sub>R</sub></span> radial turns. In this case <span class="html-italic">n<sub>R</sub></span> = 5. The tubing is modeled as Archimedean spiral whereby the beginning and the end are connected together giving a series connection of all <span class="html-italic">n<sub>R</sub></span> turns. (<b>b</b>) shows a cross-section of the model in the <span class="html-italic">z-y</span>-plane of the exited differential transformer using a primary voltage of 1 V<sub>PP</sub> at 155 kHz. The <span class="html-italic">x</span>-component of the resulting induced current density <span class="html-italic">J<sub>S,x</sub></span> is color coded. The sample conductivity <span class="html-italic">κ</span> is 2 S/m. <span class="html-italic">d<sub>S</sub></span> is the distance for the upper secondary coil <span class="html-italic">L<sub>Sec1</sub></span> to the center of the sample and is 3.55 mm. <span class="html-italic">r</span><sub>0</sub> = 10 mm is the minimum inner radius of the spiral.</p> "> Figure 5
<p>The simulated sensitivity <span class="html-italic">S<sub>κ</sub></span> versus the number of radial turns <span class="html-italic">n<sub>R</sub></span> using the CST-EM Studio model from <a href="#sensors-21-05535-f004" class="html-fig">Figure 4</a> is represented as green dots. <span class="html-italic">S<sub>κ</sub></span> was determined using Equation (3) while the <span class="html-italic">κ</span> was changed from 1 S/m to 2 S/m. The blue squares represent the calculated sensitivity using the mathematical model from Equation (12).</p> "> Figure 6
<p>Comparision between the induced current <span class="html-italic">I</span><sub>S</sub> into the tubing system as a function of the radial turns <span class="html-italic">n<sub>R</sub></span>, calculated according to Equation (5) (red crosses) and simulated using the CST-EM Studio model form <a href="#sensors-21-05535-f004" class="html-fig">Figure 4</a> (red dots) while <span class="html-italic">κ</span> = 2 S/m. For better comparability, both values are normalized to <span class="html-italic">I<sub>S</sub></span>(<span class="html-italic">n<sub>R</sub></span> = 1) (simulated: <span class="html-italic">I<sub>S</sub>(n<sub>R</sub></span> = 1) = 3.66 µA; calculated: <span class="html-italic">I<sub>S</sub></span>(<span class="html-italic">n<sub>R</sub></span> = 1) = 4.8 µA) The reciprocal of the impedance <span class="html-italic">Z<sub>S</sub></span> of the sample depending on <span class="html-italic">n</span><sub>R</sub> is shown as black dots also normalized to the initial value at <span class="html-italic">n<sub>R</sub></span> = 1.</p> "> Figure 7
<p>Calculated sensitivity S<span class="html-italic">κ</span> using the mathematical model according to Equation (12) with a constant tubing length <span class="html-italic">l<sub>t</sub></span> = 7.5 m (black triangles). The red circles are the experimental measured sensitivities <span class="html-italic">S<sub>c</sub></span> using the PCB differential transformer and NaCl solutions as sample. The differential transformer is driven with a primary voltage <span class="html-italic">U<sub>P</sub></span> of 1 V<sub>PP</sub> at 155 kHz. The tubing is wrapped around the ferrite core in radial direction with <span class="html-italic">n<sub>R</sub></span> turns forming a planar multi-layer winding.</p> "> Figure 8
<p>Photography of the PCB differential transformer for the experimental investigation with radial winding having <span class="html-italic">n<sub>R</sub></span> turns of the tubing around the ferrite core forming a planar multi-layer winding. Here, it has three turns.</p> "> Figure 9
<p>(<b>a</b>) Numerical CST-EM Studio model for simulating the impact of <span class="html-italic">n<sub>L</sub></span> longitudinal turns forming a multi-layer helix. The inside radius <span class="html-italic">r</span><sub>0</sub> of the helix is 10 mm. Here, the helix has <span class="html-italic">n<sub>L</sub></span> = 6 turns. The beginning and the end of the tubing are connected together giving a series connection of all <span class="html-italic">n<sub>L</sub></span> windings. (<b>b</b>) Cross-section of the model in the <span class="html-italic">y-z</span>-plane of the exited differential transformer using a primary voltage of 1 V<sub>PP</sub> at 155 kHz. The <span class="html-italic">x</span>-component of the resulting induced current density <span class="html-italic">J<sub>S,x</sub></span> is color coded. The sample conductivity <span class="html-italic">κ</span> is 2 S/m.</p> "> Figure 10
<p>Reciprocal <span class="html-italic">Z<sub>S</sub></span> <sup>−1</sup> for a tubing length calculated according to Equation (14) with <span class="html-italic">ξ</span><sub>1</sub> = 20 mm + <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span> (black dots) and <span class="html-italic">ξ</span><sub>2</sub> = 800 mm − <span class="html-italic">n</span><sub>L</sub><span class="html-italic">D<sub>t,o</sub></span> (black triangles) normalized to <span class="html-italic">Z</span><sub>S</sub> <sup>−1</sup>(<span class="html-italic">n<sub>L</sub></span> = 1). In addition, the simulated induced current <span class="html-italic">I<sub>S</sub></span> into the sample using the model from <a href="#sensors-21-05535-f009" class="html-fig">Figure 9</a> is shown as red dots for <span class="html-italic">ξ</span><sub>1</sub> = 20 mm + <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span> and as red triangles for <span class="html-italic">ξ</span><sub>2</sub> = 800 mm − <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span>. In both cases, the conductivity <span class="html-italic">κ</span> is 2 S/m.</p> "> Figure 11
<p>Simulated sensitivity <span class="html-italic">S<sub>κ</sub></span> using the numerical CST-EM Studio model from <a href="#sensors-21-05535-f009" class="html-fig">Figure 9</a>. The tubing is wrapped longitudinally to the ferrite core with <span class="html-italic">n<sub>L</sub></span> turns and modeled as a helix having a radius <span class="html-italic">r</span><sub>0</sub> of 10 mm. The black squares represent the simulation using the connection <span class="html-italic">ξ</span><sub>1</sub> = 20 mm + <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span> between the beginning and the end of the helix and thus kept as short as possible. The blue dots represent the simulation for <span class="html-italic">ξ</span><sub>2</sub> = 800 mm − <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span> in Equation (14). <span class="html-italic">S<sub>κ</sub></span> was determined using Equation (3) while the <span class="html-italic">κ</span> was changed from 1 S/m to 2 S/m.</p> "> Figure 12
<p>Photography of the PCB differential transformer for the experimental investigation with longitudinal winding having <span class="html-italic">n<sub>L</sub></span> = 4 turns. The tubing around the ferrite core forms a helix.</p> "> Figure 13
<p>Simulated sensitivity <span class="html-italic">S<sub>κ</sub></span> using the numerical CST-EM Studio model from <a href="#sensors-21-05535-f009" class="html-fig">Figure 9</a> (blue dots). The tubing is wrapped longitudinally to the ferrite core with <span class="html-italic">n<sub>L</sub></span> turns and modeled as a helix having a radius <span class="html-italic">r</span><sub>0</sub> of 10 mm. The beginning and the end of the helix are connected together with a tubing an additional tubing of the length <span class="html-italic">ξ</span><sub>2</sub> = 800 mm − <span class="html-italic">n<sub>L</sub>D<sub>t,o</sub></span>. <span class="html-italic">S<sub>κ</sub></span> was determined using Equation (3) while the <span class="html-italic">κ</span> was changed from 1 S/m to 2 S/m. The red circles represent the measured sensitivity <span class="html-italic">S<sub>c</sub></span> using the PCB differential transformer from <a href="#sensors-21-05535-f012" class="html-fig">Figure 12</a>. The tubing was flushed with different concentrations <span class="html-italic">c</span> of a NaCl solution (<span class="html-italic">c</span> = 100 mmol/L to 150 mmol/L), so that the sensitivity could be determined according to Equation (2). The tubing length <span class="html-italic">l<sub>t</sub></span> was constant in the experimental investigations at <span class="html-italic">l<sub>t</sub></span> = 3.5 m.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Printed Circuit Board (PCB)-Differential Transformer and the Experimental Setup
2.2. Numerical Simulation Model
3. Results and Discussion
3.1. Radial Winding
3.1.1. Numerical Simulations for Radial Winding
3.1.2. Mathematical Model for Radial Winding
3.1.3. Experimental Investigations for Radial Winding
3.2. Longitudinal Winding
3.2.1. Numerical Simulations for Longitudinal Winding
3.2.2. Experimental Investigations for Longitudinal Winding
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tura, A.; Sbrignadello, S.; Mambelli, E.; Ravazzani, P.; Santoro, A.; Pacini, G. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: In vitro experiments. PLoS ONE 2013, 8, e69227. [Google Scholar] [CrossRef]
- Petitclerc, T.; Goux, N.; Reynier, A.L.; Béné, B. A Model for Non-invasive estimation of in vivo dialyzer performances and patient′s conductivity during hemodialysis. Int. J. Artif. Organs 1993, 16, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Stragier, A.; Lopot, F.; Švára, F.; Polakovič, V. Fallacies and pitfalls of dialysis sodium prescription and control. Blood Purif. 2018, 46, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Sellering, F.; Rohrich, H.; Mansour, H.; Perl, T.; Zimmermann, S. A Differential Transformer for Noninvasive Continuous Sodium Monitoring During Dialysis Treatment. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–4. [Google Scholar]
- Locatelli, F.; La Milia, V.; Violo, L.; Del Vecchio, L.; Di Filippo, S. Optimizing haemodialysate composition. Clin. Kidney J. 2015, 8, 580–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Di Filippo, S.; Manzoni, C. Relevance of the conductivity kinetic model in the control of sodium pool. Kidney Int. 2000, 58, S89–S95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.K.; Wieringa, F.; Frijns, A.J.; Kooman, J.P. On-line monitoring of electrolytes in hemodialysis: On the road towards individualizing treatment. Expert Rev. Med. Devices 2016, 13, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Buoncristiani, U.; Canaud, B.; Köhler, H.; Petitclerc, T.; Zucchelli, P. Haemodialysis with on-line monitoring equipment: Tools or toys? Nephrol. Dial. Transplant. 2005, 20, 22–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, M.; Zygmanowski, A.; Sellering, F.; Röhrich, H.; Perl, T.; Mansour, H.; Zimmermann, S. Contactless and continuous sodium concentration monitoring during continuous renal replacement therapy. Sens. Actuators B Chem. 2020, 320, 128372. [Google Scholar] [CrossRef]
- Patel, P.; Nandwani, V.; McCarthy, P.J.; Conrad, S.A.; Scott, L.K. Continuous renal replacement therapies: A brief primer for the neurointensivist. Neurocritical Care 2010, 13, 286–294. [Google Scholar] [CrossRef]
- Darmon, M.; Pichon, M.; Schwebel, C.; Ruckly, S.; Adrie, C.; Haouache, H.; Azoulay, E.; Bouadma, L.; Clec′H, C.; Garrouste-Orgeas, M.; et al. Influence of early dysnatremia correction on survival of critically ill patients. Shock 2014, 41, 394–399. [Google Scholar] [CrossRef]
- Ostermann, M.; Dickie, H.; Tovey, L.; Treacher, D. Management of sodium disorders during continuous haemofiltration. Crit. Care 2010, 14, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquette, F.; Goupil, R.; Madore, F.; Troyanov, S.; Bouchard, J. Continuous venovenous hemofiltration using customized replacement fluid for acute kidney injury with severe hypernatremia. Clin. Kidney J. 2016, 9, 540–542. [Google Scholar] [CrossRef] [Green Version]
- De Paula, F.M.; Peixoto, A.J.; Pinto, L.V.; Dorigo, D.; Patricio, P.J.; Santos, S.F. Clinical consequences of an individualized dialysate sodium prescription in hemodialysis patients. Kidney Int. 2004, 66, 1232–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, B.F. Individualizing the Dialysate in the Hemodialysis Patient. Semin. Dial. 2001, 14, 41–49. [Google Scholar] [CrossRef]
- Bernsen, H.J.; Prick, M.J. Improvement of central pontine myelinolysis as demonstrated by repeated magnetic resonance imaging in a patient without evidence of hyponatremia. Acta Neurol. Belg. 1999, 99, 189–193. [Google Scholar]
- Mallick, N.P.; Gokal, R. Haemodialysis. Lancet 1999, 353, 737–742. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical properties of blood and its constitutents: Alternating current spectroscopy. Ann. Hematol. 1983, 46, 185–197. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar] [CrossRef]
- Glindkamp, A.; Riechers, D.; Rehbock, C.; Hitzmann, B.; Scheper, T.; Reardon, K.F. Sensors in Disposable Bioreactors Status and Trends. Blue Biotechnol. 2009, 115, 145–169. [Google Scholar] [CrossRef]
- Cannizzaro, C.; Gugerli, R.; Marison, I.; Von Stockar, U. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol. Bioeng. 2003, 84, 597–610. [Google Scholar] [CrossRef]
- Neves, A.A.; Pereira, D.; Vieira, L.M.; Menezes, J.C. Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J. Biotechnol. 2000, 84, 45–52. [Google Scholar] [CrossRef]
- Allers, M.; Reinecke, T.; Nagraik, T.; Solle, D.; Bakes, K.; Berger, M.; Scheper, T.; Zimmermann, S. Differential inductive sensor for continuous non-invasive cell growth monitoring in disposable bioreactors. Procedings 2017, 1, 518. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, T.; Biechele, P.; Sobocinski, M.; Suhr, H.; Bakes, K.; Solle, D.; Jantunen, H.; Scheper, T.; Zimmermann, S. Continuous noninvasive monitoring of cell growth in disposable bioreactors. Sens. Actuators B Chem. 2017, 251, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, T.; Biechele, P.; Frickhöffer, M.; Scheper, T.; Zimmermann, S. Non-Invasive Online Monitoring of Cell Growth in Disposable Bioreactors with a Planar Coil. Procedia Eng. 2016, 168, 582–585. [Google Scholar] [CrossRef]
- Gubartallah, E.A.; Makahleh, A.; Quirino, J.P.; Saad, B. Determination of biogenic amines in seawater using capillary electrophoresis with capacitively coupled contactless conductivity detection. Molecules 2018, 23, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito-Neto, J.G.A.; Silva, J.; Blanes, L.; Lago, C.D. Understanding Capacitively Coupled Contactless Conductivity Detection in Capillary and Microchip Electrophoresis. Part 2. Peak Shape, Stray Capacitance, Noise, and Actual Electronics. Electroanalysis 2005, 17, 1207–1214. [Google Scholar] [CrossRef]
- Lyu, Y.; Ji, H.; Yang, S.; Huang, Z.; Wang, B.; Li, H. New C4D Sensor with a Simulated Inductor. Sensors 2016, 16, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivalingam, M.; Farrington, K. Haemodialysis. Medicine 2007, 35, 461–465. [Google Scholar] [CrossRef]
- Chater, K.; Kellum, J.A. Continuous vs. intermittent hemodialysis: With which spin will my patient win? Crit. Care 2007, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Gulich, R.; Lunkenheimer, P.; Loidl, A. Broadband dielectric spectroscopy on human blood. Biochim. Biophys. Acta 2011, 1810, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-Y.; Li, Z.-Y.; Zhang, Y.; Zang, X.-Q.; Ueno, K.; Misawa, H.; Sun, K. Bacterial Concentration Detection using a PCB-based Contactless Conductivity Sensor. Micromachines 2019, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Hoenich, N. The extracorporeal circuit: Materials, problems, and solutions. Hemodial. Int. 2007, 11, S26–S31. [Google Scholar] [CrossRef]
- Ivers-Tiffèe, E.; von Münch, W. Werkstoffe der Elektrotechnik; B.G. Teubner Verlag/GWV Fachverlage GmbH: Wiesbaden, Germany, 2007; ISBN 978-3-8351-0052-7. [Google Scholar]
- Parra, L.; Sendra, S.; Lloret, J.; Bosch, I. Development of a conductivity sensor for monitoring groundwater resources to optimize water management in smart city environments. Sensors 2015, 15, 20990–21015. [Google Scholar] [CrossRef] [Green Version]
- Danisi, A.; Masi, A.; Losito, R. Performance analysis of the ironless inductive position sensor in the large hadron collider collimators environment. Sensors 2015, 15, 28592–28602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loughlin, C. Sensors for Industrial Inspection; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Usher, M.J. Sensors and Transducers; Macmillan Education: London, UK, 1985; ISBN 978-0-333-38710-8. [Google Scholar]
- Petchmaneelumka, W.; Koodtalang, W.; Riewruja, V. Simple Technique for Linear-Range Extension of Linear Variable Differential Transformer. IEEE Sensors J. 2019, 19, 5045–5052. [Google Scholar] [CrossRef]
- Ripka, P.; Blažek, J.; Mirzaei, M.; Lipovský, P.; Šmelko, M.; Draganová, K. Inductive position and speed sensors. Sensors 2019, 20, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwan, H.P. Electrical Properties of Tissue and Cell Suspensions. Adv. Biol. Med Phys. 1957, 5, 147–209. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.M.; Hwang, N.H. Human red blood cell hemolysis in a turbulent shear flow: Contribution of Reynolds shear stresses. Biorheology 1984, 21, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Kameneva, M.V.; Burgreen, G.W.; Kono, K.; Repko, B.; Antaki, J.F.; Umezu, M. Effects of Turbulent Stresses upon Mechanical Hemolysis: Experimental and Computational Analysis. ASAIO J. 2004, 50, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, M.; Zygmanowski, A.; Zimmermann, S. How Geometry affects sensitivity of a differential transformer for contactless characterization of liquids. Sensors 2021, 21, 2365. [Google Scholar] [CrossRef] [PubMed]
- TYGON®-ND 100-65 Tubing. Available online: https://www.medical.saint-gobain.com/sites/imdf.medical.com/files/tygon-nd-100-65-datasheet-f19_1_0.pdf (accessed on 7 August 2021).
- Ismatec Ecoline VC-380 Pump. Available online: http://www.ismatec.de/ch_d/pumpen/s_ecoline/eco_vc380.htm (accessed on 7 August 2021).
- Wu, Y.C.; Berezansky, P.A. Low Electrolytic Conductivity Standards. J. Res. Natl. Inst. Stand. Technol. 1995, 100, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, I.N.; Semendjajew, K.A.; Musiol, G.; Mühlig, H. Taschenbuch der Mathematik, 8th ed.; Vollst. überarb. Aufl.: Frankfurt, Germany, 2012; ISBN 978-3-8171-2008-6. (In German) [Google Scholar]
- Billah, S.M.R. Dielectric Polymers. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–49. ISBN 978-3-319-76573-0. [Google Scholar]
- Bénéteau-Burnat, B.; Pernet, P.; Pilon, A.; Latour, D.; Goujon, S.; Feuillu, A.; Vaubourdolle, M. Evaluation of the GEM® Premier™ 4000: A compact blood gas CO-Oximeter and electrolyte analyzer for point-of-care and laboratory testing. Clin. Chem. Lab. Med. 2008, 46, 271–279. [Google Scholar] [CrossRef] [PubMed]
Publisher′s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, M.; Zygmanowski, A.; Zimmermann, S. Differential Inductive Sensing System for Truly Contactless Measuring of Liquids′ Electromagnetic Properties in Tubing. Sensors 2021, 21, 5535. https://doi.org/10.3390/s21165535
Berger M, Zygmanowski A, Zimmermann S. Differential Inductive Sensing System for Truly Contactless Measuring of Liquids′ Electromagnetic Properties in Tubing. Sensors. 2021; 21(16):5535. https://doi.org/10.3390/s21165535
Chicago/Turabian StyleBerger, Marc, Anne Zygmanowski, and Stefan Zimmermann. 2021. "Differential Inductive Sensing System for Truly Contactless Measuring of Liquids′ Electromagnetic Properties in Tubing" Sensors 21, no. 16: 5535. https://doi.org/10.3390/s21165535
APA StyleBerger, M., Zygmanowski, A., & Zimmermann, S. (2021). Differential Inductive Sensing System for Truly Contactless Measuring of Liquids′ Electromagnetic Properties in Tubing. Sensors, 21(16), 5535. https://doi.org/10.3390/s21165535