Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution
<p>Examples of the CPF realisations used in the process of <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> parameter estimation for two signals with different SNR values.</p> "> Figure 2
<p>Theoretical MSE of sum of slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Theoretical MSE of product of slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics for different <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>F</mi> <mi>A</mi> </mrow> </msub> </semantics></math> in various SNR conditions.</p> "> Figure 5
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>30</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>P</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>P</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>30</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>Dependence of the probability of detection on number of slices used in the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics for different <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>F</mi> <mi>A</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mo>−</mo> <mn>12</mn> </mrow> </semantics></math> dB.</p> "> Figure 10
<p>Dependence of the probability of detection on number of slices used in the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics for different SNR and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>F</mi> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Theoretical and measured MSEs of the SCPF for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Influence of the number of SCPF slices on MSE.</p> "> Figure 13
<p>Theoretical and measured MSEs of the PCPF for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 14
<p>Influence of the number of PCPF slices on MSE.</p> "> Figure 15
<p>MSE of the SCPF-based estimator and the PCPF-based estimator for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </semantics></math> slices.</p> "> Figure 16
<p>Influence of the number of SCPF slices on MSE for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>255</mn> </mrow> </semantics></math>.</p> "> Figure 17
<p>Influence of the number of SCPF slices on MSE for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>63</mn> </mrow> </semantics></math>.</p> "> Figure 18
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>30</mn> <mo>}</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>255</mn> </mrow> </semantics></math>.</p> "> Figure 19
<p>Probability of detection with use of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mi>S</mi> <mi>C</mi> <mi>P</mi> <mi>F</mi> </mrow> </semantics></math> statistics employing slices <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>30</mn> <mo>}</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>63</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Problem Statement
3. Extended Forms of the Standard CPF
4. Detection of LFM Signals with Using CPF-Based Detectors
5. Statistical Properties of the Chirp-Rate Parameter Estimators
5.1. Analysis of Statistical Properties of SCPF-Based Detector
5.2. Analysis of Statistical Properties of PCPF-Based Detector
6. Simulations Results
- maximum likelihood estimators,
- estimation methods in T-F plane,
- estimation methods in T-FR plane.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hejazikookamari, F.; Norouzi, Y.; Kashani, E.S.; Nayebi, M.M. A novel method to detect and localize LPI radars. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2327–2336. [Google Scholar] [CrossRef]
- Schroer, R. Electronic warfare. [A century of powered flight: 1903–2003]. IEEE Aerosp. Electron. Syst. Mag. 2003, 18, 49–54. [Google Scholar] [CrossRef]
- Butt, F.A.; Jalil, M. An overview of electronic warfare in radar systems. In Proceedings of the 2013 The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, Turkey, 9–11 May 2013; pp. 213–217. [Google Scholar] [CrossRef]
- Baker, D. Advances in communications electronic warfare. In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 52–55. [Google Scholar] [CrossRef]
- Abratkiewicz, K.; Samczyński, P.; Czarnecki, K. Radar signal parameters estimation using phase accelerogram in the time-frequency domain. IEEE Sens. J. 2019, 19, 5078–5085. [Google Scholar] [CrossRef]
- Barbarossa, S.; Di Lorenzo, P.; Vecchiarelli, P. Parameter estimation of 2D multi-component polynomial phase signals: An application to SAR imaging of moving targets. IEEE Trans. Signal Process. 2014, 62, 4375–4389. [Google Scholar] [CrossRef]
- Noreen, U.; Bounceur, A.; Clavier, L. A study of LoRa low power and wide area network technology. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Qadir, Q.M.; Rashid, T.A.; Al-Salihi, N.K.; Ismael, B.; Kist, A.A.; Zhang, Z. Low power wide area networks: A survey of enabling technologies, applications and interoperability needs. IEEE Access 2018, 6, 77454–77473. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- The IEEE P802.15 Working Group. IEEE Standards IEEE 802.15.4-Part 15.4-Wireless MAC and PHY Specifications for Low-Rate Wireless Personal Area Networks-LR-WPANs; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2003. [Google Scholar]
- Swiercz, E.; Konopko, K.; Janczak, D. Time-chirp Distribution for Detection and Estimation of LPI Radar Signals. In Proceedings of the 2020 21st International Radar Symposium (IRS), Warsaw, Poland, 5–8 October 2020; pp. 362–367. [Google Scholar] [CrossRef]
- Abatzoglou, T.J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans. Aerosp. Electron. Syst. 1986, AES-22, 708–715. [Google Scholar] [CrossRef]
- Djuric, P.M.; Kay, S.M. Parameter estimation of chirp signals. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 2118–2126. [Google Scholar] [CrossRef] [Green Version]
- Peleg, S.; Porat, B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 607–616. [Google Scholar] [CrossRef]
- Barbarossa, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Process. 1995, 43, 1511–1515. [Google Scholar] [CrossRef]
- Xia, X.-G. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Trans. Signal Process. 2000, 48, 3122–3133. [Google Scholar] [CrossRef] [Green Version]
- Volcker, B.; Ottersten, B. Chirp parameter estimation from a sample covariance matrix. IEEE Trans. Signal Process. 2001, 49, 603–612. [Google Scholar] [CrossRef]
- Samczyński, P. Extended generalized chirp transform for signal parameter estimation in bistatic passive pulse radars. In Proceedings of the 2013 14th International Radar Symposium (IRS), Dresden, Germany, 19–21 June 2013; Volume 1, pp. 155–160. [Google Scholar]
- Djurović, I.; Stanković, L. STFT-based estimator of polynomial phase signals. Signal Process. 2012, 92, 2769–2774. [Google Scholar] [CrossRef]
- Konopko, K.; Grishin, Y.P.; Jańczak, D. Radar signal recognition based on time-frequency representations and multidimensional probability density function estimator. In Proceedings of the 2015 Signal Processing Symposium (SPSympo), Debe, Poland, 10–12 June 2015; pp. 1–6. [Google Scholar]
- Konopko, K. A detection algorithm of LPI radar signals. In Proceedings of the Signal Processing Algorithms, Architectures, Arrangements, and Applications SPA 2007, Poznan, Poland, 7 September 2007; pp. 103–108. [Google Scholar] [CrossRef]
- Świercz, E. Automatic classification of LFM signals for radar emitter recognition using wavelet decomposition and LVQ classifier. Acta Phys. Pol. A 2011, 119, 488–494. [Google Scholar] [CrossRef]
- Wang, M.; Chan, A.K.; Chui, C.K. Linear frequency-modulated signal detection using Radon-ambiguity transform. IEEE Trans. Signal Process. 1998, 46, 571–586. [Google Scholar] [CrossRef]
- Djurović, I. A WD-RANSAC instantaneous frequency estimator. IEEE Signal Process. Lett. 2016, 23, 757–761. [Google Scholar] [CrossRef]
- O’Shea, P. A new technique for instantaneous frequency rate estimation. IEEE Signal Process. Lett. 2002, 9, 251–252. [Google Scholar] [CrossRef] [Green Version]
- Abratkiewicz, K.; Krysik, P.; Gajo, Z.; Samczyński, P. Target Doppler Rate Estimation Based on the Complex Phase of STFT in Passive Forward Scattering Radar. Sensors 2019, 19, 3627. [Google Scholar] [CrossRef] [Green Version]
- Abratkiewicz, K.; Samczyński, P. A block method using the chirp rate estimation for NLFM radar pulse reconstruction. Sensors 2019, 19, 5015. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, K. The instantaneous frequency rate spectrogram. Mech. Syst. Signal Process. 2016, 66–67, 361–373. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Djurović, I.; Himed, B. Integrated cubic phase function for linear FM signal analysis. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 963–977. [Google Scholar] [CrossRef]
- Djurović, I.; Simeunović, M. Combined HO-CPF and HO-WD PPS estimator. Signal Image Video Process. 2015, 9, 1395–1400. [Google Scholar] [CrossRef]
- O’Shea, P. A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Trans. Signal Process. 2004, 52, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, J. Multicomponent chirp signals analysis using product cubic phase function. Digit. Signal Process. 2006, 16, 654–669. [Google Scholar] [CrossRef]
- Reed, I. On a moment theorem for complex Gaussian processes. IRE Trans. Inf. Theory 1962, 8, 194–195. [Google Scholar] [CrossRef]
- Djurović, I.; Stanković, L. Quasi-maximum-likelihood estimator of polynomial phase signals. IET Signal Process. 2014, 4, 347–359. [Google Scholar] [CrossRef]
Estimation Method | SNR Threshold [dB] | Signal Parameters | Publication |
---|---|---|---|
HAF | 11 | , | [34] |
HAF | 17 | , | [34] |
PHAF | 5 | , | [34] |
PHAF | 9 | , | [34] |
STFT | 3 | , | [19] |
STFT | 16 | , | [19] |
QML | 0 | , | [34] |
QML | , | [34] | |
Complex STFT | 0 | , | [26] |
WHT | 5 | , | [15] |
HOCPF-WD | 1 | , | [30] |
ICPF | (256 slices) estimation | , | [29] |
ICPF | (64 slices) detection | , | [29] |
Proposed SCPF | (31 slices) estimation | , | Proposed method |
Proposed SCPF | (31 slices) detection | , | Proposed method |
Proposed SCPF | (31 slices) estimation | , | Proposed method |
Proposed SCPF | (31 slices) detection | , | Proposed method |
Proposed SCPF | (31 slices) estimation | , | Proposed method |
Proposed SCPF | (31 slices) detection | , | Proposed method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiercz, E.; Janczak, D.; Konopko, K. Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution. Sensors 2021, 21, 5415. https://doi.org/10.3390/s21165415
Swiercz E, Janczak D, Konopko K. Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution. Sensors. 2021; 21(16):5415. https://doi.org/10.3390/s21165415
Chicago/Turabian StyleSwiercz, Ewa, Dariusz Janczak, and Krzysztof Konopko. 2021. "Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution" Sensors 21, no. 16: 5415. https://doi.org/10.3390/s21165415
APA StyleSwiercz, E., Janczak, D., & Konopko, K. (2021). Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution. Sensors, 21(16), 5415. https://doi.org/10.3390/s21165415