Dosimetric Application of Phosphorus Doped Fibre for X-ray and Proton Therapy
<p>Setup of the experiment.</p> "> Figure 2
<p>(<b>a</b>) setup of the fibre loop in the water box for proton radiation (<b>b</b>) setup of the fibre loop on a water equivalent material for X-ray radiation.</p> "> Figure 3
<p>(<b>a</b>) Wavelength spectrum before and after radiation. (<b>b</b>) Dependence of the RIA on MU for 6 MV X-ray radiation.</p> "> Figure 4
<p>(<b>a</b>) Dependence of the RIA on dose (MU) for 15 MV X-ray radiation. (<b>b</b>) Sensitivity of the fibre across wavelengths for 6 MV and 15 MV radiation for 1000 MU with inset showing the graph of the conversion to the estimated dose delivered at 100 cm from the source.</p> "> Figure 5
<p>(<b>a</b>) Wavelength spectrum before and after radiation in the Bragg peak. (<b>b</b>) Dependence of the RIA on MC.</p> "> Figure 6
<p>(<b>a</b>) 2D view of fibre sensitivity with wavelength at various positions along the proton track; (<b>b</b>) 3D view of fibre sensitivity with wavelength at different water depths showing the typical shape of the Bragg peak.</p> "> Figure 7
<p>(<b>a</b>) Bragg peak detected in the water phantom by the RIA as measured with the INO OF at selected wavelengths. (<b>b</b>) RIA from accumulation of dose converted to Gy from <a href="#sensors-21-05157-t004" class="html-table">Table 4</a> at selected wavelength where grid lines (position (mm)) indicate estimated delivered dose at that position; inset graph shows the comparison of sensitivity measured at 36.5 mm at the start of all proton irradiation (red) and afterwards (black).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. INO Fibre Sample
2.2. X-ray Irradiation
2.3. Proton Irradiation
2.4. Data Analysis
3. Results
3.1. X-ray RIA Results—6 MV
3.2. X-ray RIA Results—15 MV
3.3. Proton RIA Results
4. Discussion
4.1. Dose Dependence
4.2. Energy Dependence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Di Francesca, D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Shikama, T.; Kakuta, T.; Shamoto, N.; Narui, M.; Sagawa, T. Behavior of developed radiation-resistant silica-core optical fibers under fission reactor irradiation. Fusion Eng. Des. 2000, 51–52, 179–183. [Google Scholar] [CrossRef]
- Brichard, B.; Fernandez, A.F.; Ooms, H.; Berghmans, F.; Decréton, M.; Tomashuk, A.; Klyamkin, S.; Zabezhailov, M.; Nikolin, I.; Bogatyrjov, V.; et al. Radiation-hardening techniques of dedicated optical fibres used in plasma diagnostic systems in ITER. J. Nucl. Mater. 2004, 329–333, 1456–1460. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Boukenter, A.; Meunier, J.P.; Ouerdane, Y.; Azaïs, B.; Charre, P.; Vié, M. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2004, 215, 187–195. [Google Scholar] [CrossRef]
- Wijnands, T.J.; De Jonge, L.K.; Kuhnhenn, J.; Hoeffgen, S.K.; Weinand, U. Optical absorption in commercial single mode optical fibres for the LHC machine. In Proceedings of the Topical Workshop on Electronics for Particle Physics, TWEPP 2007, Prague, Czech Republic, 3–7 September 2007; pp. 121–124. [Google Scholar]
- Primak, W. Fast Neutron Induced Changes. Phys. Rev. 1958, 110, 1240–1254. [Google Scholar] [CrossRef]
- Marckmann, C.J.; Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L. Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters. Radiat. Prot. Dosim. 2006, 119, 363–367. [Google Scholar] [CrossRef]
- Veronese, I.; Cantone, M.C.; Catalano, M.; Chiodini, N.; Fasoli, M.; Mancosu, P.; Mones, E.; Moretti, F.; Scorsetti, M.; Vedda, A. Study of the radioluminesence spectra of doped silica optical fibre dosimeters for stem effect removal. J. Phys. D Appl. Phys. 2013, 46, 015101. [Google Scholar] [CrossRef]
- Ladaci, A. Rare Earth Doped Optical Fibers and Amplifiers for Space Applications; Politecnico di Bari, Université de Lyon: Lyon, France, 2019. [Google Scholar]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 2018, 20, 93001. [Google Scholar] [CrossRef] [Green Version]
- Ehrt, D.; Ebeling, P.; Natura, U. UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses. J. Non. Cryst. Solids 2000, 263, 240–250. [Google Scholar] [CrossRef]
- Origlio, G.; Messina, F.; Cannas, M.; Boscaino, R.; Girard, S.; Boukenter, A.; Ouerdane, Y. Optical properties of phosphorus-related point defects in silica fiber preforms. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 205208. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 1983, 54, 3743–3762. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation effects on silica-based optical fibers: Recent advances and future challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Paul, M.C.; Bohra, D.; Dhar, A.; Sen, R.; Bhatnagar, P.K.; Dasgupta, K. Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation. J. Non. Cryst. Solids 2009, 355, 1496–1507. [Google Scholar] [CrossRef]
- Bradley, D.A.; Zubair, H.T.; Oresegun, A.; Louay, G.T.; Abdul-Rashid, H.A.; Ung, N.M.; Alzimami, K.S. Towards the development of doped silica radioluminescence dosimetry. Radiat. Phys. Chem. 2019, 154, 46–52. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Richard, N.; Boukenter, A.; Ouerdane, Y.; Gelardi, F.M. Radiation response of ce-codoped germanosilicate and phosphosilicate optical fibers. IEEE Trans. Nucl. Sci. 2016, 63, 2058–2064. [Google Scholar] [CrossRef]
- West, R.H. P-doped optical fibers in dosimetry. In Photonics for Space and Radiation Environments II; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4547. [Google Scholar]
- Borgermans, P.; Brichard, B.; Berghmans, F.; Decreton, M.C.; Golant, K.M.; Thomashuk, A.L.; Nikolin, I.V. Dosimetry with optical fibres: Results for pure silica, phosphorous and erbium doped samples. In Fiber Optic Sensor Technology II; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4204, pp. 151–160. [Google Scholar]
- Zubair, H.T.; Oresegun, A.; Rahman, A.K.M.M.; Ung, N.M.; Mat Sharif, K.A.; Zulkifli, M.I.; Yassin, S.Z.M.; Maah, M.J.; Yusoff, Z.; Abdul-Rashid, H.A.; et al. Real-time radiation dosimetry using P-doped silica optical fiber. Meas. J. Int. Meas. Confed. 2019, 146, 119–124. [Google Scholar] [CrossRef]
- Hoehr, C.; Morana, A.; Duhamel, O.; Capoen, B.; Trinczek, M.; Paillet, P.; Duzenli, C.; Bouazaoui, M.; Bouwmans, G.; Cassez, A.; et al. Novel Gd3+-doped silica-based optical fiber material for dosimetry in proton therapy. Sci. Rep. 2019, 9, 4–11. [Google Scholar] [CrossRef]
- Hoehr, C.; Penner, C.; O’Keeffe, S.; Woulfe, P.; Capoen, B.; El Hamzaoui, H.; Bouwmans, G.; Morana, A.; Girard, S. Optical Fibers for Dosimetry in External Beam Therapy. In Proceedings of the Optical Sensors and Sensing Congress, Washington, DC, USA, 22–26 June 2020; Optical Society of America: Washington, DC, USA, 2020; p. STu5D.2. [Google Scholar]
- Savard, N.; Potkins, D.; Beaudry, J.; Jirasek, A.; Duzenli, C.; Hoehr, C. Characteristics of a Ce-Doped silica fiber irradiated by 74 MeV protons. Radiat. Meas. 2018, 114, 19–24. [Google Scholar] [CrossRef]
- Veronese, I.; Cantone, M.C.; Chiodini, N.; Coray, A.; Fasoli, M.; Lomax, A.; Mones, E.; Moretti, F.; Vedda, A. Feasibility study for the use of cerium-doped silica fibres in proton therapy. Radiat. Meas. 2010, 45, 635–639. [Google Scholar] [CrossRef]
- Toccafondo, I.; Marin, Y.E.; Guillermain, E.; Kuhnhenn, J.; Mekki, J.; Brugger, M.; Pasquale, F. Di Distributed Optical Fiber Radiation Sensing in a Mixed-Field Radiation Environment at CERN. J. Light. Technol. 2017, 35, 3303–3310. [Google Scholar] [CrossRef]
- Sabatier, C.; Rizzolo, S.; Morana, A.; Allanche, T.; Robin, T.; Cadier, B.; Paillet, P.; Gaillardin, M.; Duhamel, O.; Marcandella, C.; et al. 6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. IEEE Trans. Nucl. Sci. 2018, 65, 1598–1603. [Google Scholar] [CrossRef]
- Blackmore, E.W. Operation of the TRIUMF (20-500 MeV) proton irradiation facility. In Proceedings of the 2000 IEEE Radiation Effects Data Workshop, Workshop Record, Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.00TH8527), Reno, NV, USA, 24–28 July 2000; pp. 1–5. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Marcandella, C.; Boukenter, A.; Quenard, S.; Authier, N. Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. J. Non-Cryst. Solids 2011, 357, 1871–1874. [Google Scholar] [CrossRef]
- Di Francesca, D.; Li Vecchi, G.; Girard, S.; Alessi, A.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Kadi, Y.; Brugger, M. Radiation-Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Trans. Nucl. Sci. 2018, 65, 126–131. [Google Scholar] [CrossRef]
- Xhafa, B.; Mulaj, T.; Hodolli, G.; Nafezi, G. Dose Distribution of Photon Beam by Siemens Linear Accelerator. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 2014, 03, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.M.; Gibbons, J.P. Khan’s the Physics of Radiation Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; ISBN 9781451182453. [Google Scholar]
- Tavernier, S. Interactions of Particles in Matter. In Experimental Techniques in Nuclear and Particle Physics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–306. ISBN 9783642008283. [Google Scholar]
- Dicello, J.F. Absorption Characteristics of Protons and Photons in Tissue. Technol. Cancer Res. Treat. 2007, 6, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Verhey, L.; Blattman, H.; Deluca, P.M.; Miller, D. 4. Proton Interactions with Matter. J. Int. Comm. Radiat. Units Meas. 1998, os30, 13–14. [Google Scholar] [CrossRef]
- Newhauser, W.D.; Zhang, R. The physics of proton therapy. Phys. Med. Biol. 2015, 60, R155–R209. [Google Scholar] [CrossRef]
Wavelength (nm) | Sensitivity at 6 MV (dB/m/Gy) | |
---|---|---|
480 | 10.10 | 2.7563 |
530 | 9.06 | 2.4725 |
613 | 3.87 | 1.0559 |
650 | 1.48 | 0.4044 |
Wavelength (nm) | Sensitivity at 15 MV (dB/m/Gy) | |
---|---|---|
480 | 8.08 | 3.6945 |
530 | 6.88 | 3.1422 |
613 | 2.72 | 1.2441 |
650 | 0.61 | 0.2793 |
Wavelength(nm) | Sensitivity at Bragg Peak (dB/m/Gy) | |
---|---|---|
528 | 1.4166 | 1.2011 |
573 | 1.1491 | 0.9842 |
652 | 0.2741 | 0.2324 |
680 | 0.1241 | 0.1053 |
Position (mm) | 36.3 | 34.8 | 32.4 | 30.0 | 27.7 | 23.7 | 15.8 | 7.9 | 0 |
Dose (cGy/10,000 MC) | 117.9 | 113.3 | 75.1 | 62.0 | 54.8 | 47.9 | 41.8 | 39.0 | 37.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olusoji, O.J.; Penner, C.; Bélanger-Champagne, C.; Kam, W.; Martyn, M.; Woulfe, P.; Hoehr, C.; O’Keeffe, S. Dosimetric Application of Phosphorus Doped Fibre for X-ray and Proton Therapy. Sensors 2021, 21, 5157. https://doi.org/10.3390/s21155157
Olusoji OJ, Penner C, Bélanger-Champagne C, Kam W, Martyn M, Woulfe P, Hoehr C, O’Keeffe S. Dosimetric Application of Phosphorus Doped Fibre for X-ray and Proton Therapy. Sensors. 2021; 21(15):5157. https://doi.org/10.3390/s21155157
Chicago/Turabian StyleOlusoji, Olugbenga J., Crystal Penner, Camille Bélanger-Champagne, Wern Kam, Michael Martyn, Peter Woulfe, Cornelia Hoehr, and Sinead O’Keeffe. 2021. "Dosimetric Application of Phosphorus Doped Fibre for X-ray and Proton Therapy" Sensors 21, no. 15: 5157. https://doi.org/10.3390/s21155157
APA StyleOlusoji, O. J., Penner, C., Bélanger-Champagne, C., Kam, W., Martyn, M., Woulfe, P., Hoehr, C., & O’Keeffe, S. (2021). Dosimetric Application of Phosphorus Doped Fibre for X-ray and Proton Therapy. Sensors, 21(15), 5157. https://doi.org/10.3390/s21155157