Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor
<p>Microphotograph of the tip of a fiber-optic probe coated with the sensitive layer.</p> "> Figure 2
<p>The scheme of the fiber-optic pH sensor system.</p> "> Figure 3
<p>Diagram of the measuring cell.</p> "> Figure 4
<p>Retrieval of an aqueous humor sample during cataract surgery.</p> "> Figure 5
<p>(<b>a</b>) Excitation spectra of the sensitive layer on a planar substrate taken at a 508 nm emission wavelength at different pHs; (<b>b</b>) and emission spectra taken at 405 nm and 450 nm excitation wavelengths in a buffer solution with pH = 6.0.</p> "> Figure 6
<p>Normalized calibration curves measured on a planar substrate with fluorescence spectrometer (blue diamonds) and on a tapered fiber-optic probe with the sensor system (red dots).</p> "> Figure 7
<p>Sensor response in time during a measurement of a sample.</p> "> Figure 8
<p>Decrease of the measured intensities and the sensor response for pH = 7.0 in time.</p> "> Figure 9
<p>Relative frequency distribution of aqueous humor pH for FLACS and phacoemulsification.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Fiber-Optic pH Sensor System
2.2. Characterization of the Sensing Layer
2.3. Ex-Vivo Measurement of Aqueous Humor pH
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global Causes of Blindness and Distance Vision Impairment 1990–2020: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Di Censo, F.; Di Censo, M.; Oum, M.A. Changes in Aqueous Humor PH After Femtosecond Laser-Assisted Cataract Surgery. J. Refract. Surg. 2015, 31, 462–465. [Google Scholar] [CrossRef]
- Vivaldi, F.; Salvo, P.; Poma, N.; Bonini, A.; Biagini, D.; Del Noce, L.; Melai, B.; Lisi, F.; Francesco, F.D. Recent Advances in Optical, Electrochemical and Field Effect PH Sensors. Chemosensors 2021, 9, 33. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of PH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.I.; Goldstein, S.R.; Fitzgerald, R.V.; Buckhold, D.K. Fiber Optic PH Probe for Physiological Use. Anal. Chem. 1980, 52, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, J.; Tan, W.; Feng, Y.; Zheng, G. Miniaturized All Fiber Probe for Optical Coherence Tomography and pH Detection of Biological Tissue. J. Biophotonics 2021, 14. [Google Scholar] [CrossRef]
- Gong, J.; Tanner, M.G.; Venkateswaran, S.; Stone, J.M.; Zhang, Y.; Bradley, M. A Hydrogel-Based Optical Fibre Fluorescent PH Sensor for Observing Lung Tumor Tissue Acidity. Anal. Chim. Acta 2020, 1134, 136–143. [Google Scholar] [CrossRef]
- Schultz, A.; Puvvadi, R.; Borisov, S.M.; Shaw, N.C.; Klimant, I.; Berry, L.J.; Montgomery, S.T.; Nguyen, T.; Kreda, S.M.; Kicic, A.; et al. Airway Surface Liquid PH Is Not Acidic in Children with Cystic Fibrosis. Nat. Commun. 2017, 8, 1409. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Tanner, M.G.; McAughtrie, S.; Yu, F.; Mills, B.; Choudhary, T.R.; Seth, S.; Craven, T.H.; Stone, J.M.; Mati, I.K.; et al. Endoscopic Sensing of Alveolar PH. Biomed. Opt. Express 2017, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Borofsky, M.S.; Handa, R.K.; Evan, A.P.; Williams, J.C.; Bledsoe, S.; Coe, F.L.; Worcester, E.M.; Lingeman, J.E. In Vivo Renal Tubule PH in Stone-Forming Human Kidneys. J. Endourol. 2020, 34, 203–208. [Google Scholar] [CrossRef]
- Handa, R.K.; Lingeman, J.E.; Bledsoe, S.B.; Evan, A.P.; Connors, B.A.; Johnson, C.D. Intraluminal Measurement of Papillary Duct Urine PH, in Vivo: A Pilot Study in the Swine Kidney. Urolithiasis 2016, 44, 211–217. [Google Scholar] [CrossRef] [Green Version]
- McLennan, H.J.; Saini, A.; Sylvia, G.M.; Schartner, E.P.; Dunning, K.R.; Purdey, M.S.; Monro, T.M.; Abell, A.D.; Thompson, J.G. A Biophotonic Approach to Measure PH in Small Volumes in Vitro: Quantifiable Differences in Metabolic Flux around the Cumulus-oocyte-complex (COC). J. Biophotonics 2020, 13. [Google Scholar] [CrossRef]
- Wencel, D.; Kaworek, A.; Abel, T.; Efremov, V.; Bradford, A.; Carthy, D.; Coady, G.; McMorrow, R.C.N.; McDonagh, C. Optical Sensor for Real-Time PH Monitoring in Human Tissue. Small 2018, 14, 1803627. [Google Scholar] [CrossRef] [PubMed]
- Oellermann, M.; Pörtner, H.-O.; Mark, F.C. Simultaneous High-Resolution PH and Spectrophotometric Recordings of Oxygen Binding in Native Blood Microvolumes. J. Exp. Biol. 2014, 217, 1430–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, S.H.; Min, S.Y.; Byun, K.M.; Lee, S.Y. Dual-Modal Cancer Detection Based on Optical PH Sensing and Raman Spectroscopy. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H.; Chen, S.; Lan, X.; Xiao, H.; Shi, H.; Ma, Y. Fiber-Optic-Based Micro-Probe Using Hexagonal 1-in-6 Fiber Configuration for Intracellular Single-Cell PH Measurement. Anal. Chem. 2015, 87, 7171–7179. [Google Scholar] [CrossRef]
- Veselovsky, J.; Olah, Z.; Vesela, A.; Gressnerova, S. The Free Amino Acids and the Aqueous Humor PH after Antiglaucomatics in Vitro. Bratisl. Lek. Listy 2003, 104, 14–18. [Google Scholar] [PubMed]
- Sharma, R.G.; Mishra, Y.C.; Verma, G.L.; Lal, K. A Clinical Evaluation of Oxygen and Carbon Dioxide Values and PH in the Human Aqueous Humour in Normal and Cataractous Eyes. Indian J. Ophthalmol. 1983, 31, 525–527. [Google Scholar] [PubMed]
- Lu, D.-W.; Tai, M.-C.; Chang, Y.-H.; Liang, C.-M.; Chen, C.-L.; Chien, K.-H.; Chen, J.-T.; Chen, Y.-H. Anterior Chamber Paracentesis and PH Values in Patients with Acute Primary Angle Closure. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Wencel, D.; MacCraith, B.D.; McDonagh, C. High Performance Optical Ratiometric Sol–Gel-Based PH Sensor. Sens. Actuators B Chem. 2009, 139, 208–213. [Google Scholar] [CrossRef]
- Kašík, I.; Mrazek, J.; Martan, T.; Pospisilova, M.; Podrazky, O.; Matejec, V.; Hoyerova, K.; Kaminek, M. Fiber-Optic PH Detection in Small Volumes of Biosamples. Anal. Bioanal. Chem. 2010, 398, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Kašík, I.; Podrazký, O.; Mrázek, J.; Martan, T.; Matějec, V.; Hoyerová, K.; Kamínek, M. In Vivo Optical Detection of PH in Microscopic Tissue Samples of Arabidopsis Thaliana. Mater. Sci. Eng. C 2013, 33, 4809–4815. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Podrazky, O.; Mrazek, J.; Probostova, J.; Kasik, I. Tapered-Fiber Optical Sensor for Physiological PH Range. IEEE Sens. J. 2015, 15, 4967–4973. [Google Scholar] [CrossRef]
- Podrazky, O.; Mrazek, J.; Vytykacova, S.; Probostova, J.; Kasik, I. Fiber-Optic PH Sensing System with Microscopic Spatial Resolution. In Proceedings of the OPTICAL SENSORS 2015, Boston, MA, USA, 27 June–1 July 2015; Baldini, F., Homola, J., Lieberman, R.A., Eds.; Volume 9506. [Google Scholar]
- Podrazký, O.; Peterka, P.; Kašík, I.; Vytykáčová, S.; Proboštová, J.; Mrázek, J.; Kuneš, M.; Závalová, V.; Radochová, V.; Lyutakov, O.; et al. In Vivo Testing of a Bioresorbable Phosphate-based Optical Fiber. J. Biophotonics 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Peterka, P.; Pugliese, D.; Jiříčková, B.; Boetti, N.G.; Turčičová, H.; Mirza, I.; Borodkin, A.; Milanese, D. High-Power Laser Testing of Calcium-Phosphate-Based Bioresorbable Optical Fibers. Opt. Mater. Express 2021, 11, 2049. [Google Scholar] [CrossRef]
- Britton, H.T.S.; Robinson, R.A. CXCVIII.—Universal Buffer Solutions and the Dissociation Constant of Veronal. J. Chem. Soc. 1931, 1456–1462. [Google Scholar] [CrossRef]
- Schulman, S.G.; Chen, S.; Bai, F.; Leiner, M.J.P.; Weis, L.; Wolfbeis, O.S. Dependence of the Fluorescence of Immobilized 1-Hydroxypyrene-3,6,8-Trisulfonate on Solution PH: Extension of the Range of Applicability of a PH Fluorosensor. Anal. Chim. Acta 1995, 304, 165–170. [Google Scholar] [CrossRef]
Sample | Sensor Response | Calculated pH | |||||||
---|---|---|---|---|---|---|---|---|---|
R | σ | R1 | σ1 | R2 | σ2 | pH | σr | σpH | |
1 | 1.388 | 0.005 | 1.259 | 0.005 | 1.485 | 0.004 | 7.24 | 6.2% | 0.03 |
2 | 1.517 | 0.010 | 1.348 | 0.008 | 1.603 | 0.004 | 7.29 | 8.3% | 0.04 |
3 | 1.505 | 0.006 | 1.335 | 0.004 | 1.582 | 0.005 | 7.30 | 4.9% | 0.02 |
4 | 1.449 | 0.005 | 1.300 | 0.004 | 1.558 | 0.005 | 7.24 | 5.0% | 0.02 |
5 | 1.458 | 0.005 | 1.323 | 0.006 | 1.568 | 0.006 | 7.23 | 6.7% | 0.03 |
6 | 1.437 | 0.004 | 1.301 | 0.004 | 1.535 | 0.004 | 7.24 | 4.8% | 0.02 |
Measurement | Meas. Duration (s) | Time from the Beginning (s) | I450 | I405 | R |
---|---|---|---|---|---|
Beginning | 40 | 40 | 22,584 | 16,507 | 1.368 |
Sample 1 | 558 | 598 | 21,413 | 16,005 | 1.338 |
Sample 2 | 1778 | 2376 | 21,556 | 15,961 | 1.351 |
Sample 3 | 1657 | 4033 | 16,770 | 12,878 | 1.302 |
Sample 4 | 992 | 5025 | 15,591 | 11,974 | 1.302 |
Sample 5 | 514 | 5539 | 14,455 | 10,923 | 1.323 |
Sample 6 | 966 | 6505 | 13,430 | 10,647 | 1.261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podrazký, O.; Mrázek, J.; Proboštová, J.; Vytykáčová, S.; Kašík, I.; Pitrová, Š.; Jasim, A.A. Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors 2021, 21, 5075. https://doi.org/10.3390/s21155075
Podrazký O, Mrázek J, Proboštová J, Vytykáčová S, Kašík I, Pitrová Š, Jasim AA. Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors. 2021; 21(15):5075. https://doi.org/10.3390/s21155075
Chicago/Turabian StylePodrazký, Ondřej, Jan Mrázek, Jana Proboštová, Soňa Vytykáčová, Ivan Kašík, Šárka Pitrová, and Ali A. Jasim. 2021. "Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor" Sensors 21, no. 15: 5075. https://doi.org/10.3390/s21155075
APA StylePodrazký, O., Mrázek, J., Proboštová, J., Vytykáčová, S., Kašík, I., Pitrová, Š., & Jasim, A. A. (2021). Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors, 21(15), 5075. https://doi.org/10.3390/s21155075