Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors
<p>MCA-8 measurement device: (<b>a</b>) general view: A, multi-sensor recorder (MCA-8); B, power supply control panel; C, control panel for data transfer to the server; D, power cord; E, card reader; F, housing; and G, inlet channels; and (<b>b</b>) block diagram with marked construction elements and directional gas 80 flow.</p> "> Figure 2
<p>The measurement stand.</p> "> Figure 3
<p><span class="html-italic">P. l. larvae</span> (strain ATCC 9545, ERIC I): a spectrum of this bacterium obtained with a MALDI-TOF MS test.</p> "> Figure 4
<p>The Petri dish with MYPGP media (which contains yeast extract, Mueller-Hinton broth, glucose, K2HPO4, sodium pyruvate, and agar) with visible fine, transparent, and slimy colonies of the P.l.larvae; 6-day culture.</p> "> Figure 5
<p>Measurement of a Petri dish with MYPGP media without visible colonies (class 23) in a wooden chamber.</p> "> Figure 6
<p>A sample graph illustrating the process of measurement. In this case, the measurement concerned a colony of <span class="html-italic">P. l. larvae</span> 6 days after culture in a wooden chamber.</p> "> Figure 7
<p>The visualization of the average reading intensity of TGS sensors for decision classes 1, 23, and 24 using M1; wooden chamber on the left and polystyrene chamber on the right.</p> "> Figure 8
<p>The visualization of the average reading intensity of TGS sensors for decision classes 1, 23, and 24 using M2; wooden chamber on the left and polystyrene chamber on the right.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction and Mechanism of the MCA-8 Device’s Operation
2.2. Construction of the Measuring Stand
2.3. Preparation of Material for Research
2.4. Decision Classes
2.5. Measurement Process
2.6. The Analyzed Variable
2.7. Visualization of the Tested Classes
2.7.1. Image of the Sensors Matrix of the M1 Device
2.7.2. Image of the Sensor Matrix of the M2 Device
2.8. Brief Approach to the Methods
Summary of the Classifiers
3. A Few General Statements about the Experiments
- M1 device in a wooden chamber, and
- M1 device in a polystyrene chamber,
4. Results for the Configuration One vs. Other
4.1. Analysis of the Results of the 5 × MCCV-5 Validation Tests in the Comparison: Specific one vs. Other (Class vs. other Classes): Choosing the Most Effective Classification Method
4.2. Results for the Configuration One vs. Other, canberra.811
5. Results of One vs. One
5.1. Results for the Configuration 23 vs. 24, manhattan.1nn
5.2. Results for the Configuration 1 vs. 23, canberra.811
5.3. Results for the Configuration 1 vs. 24, canberra.1nn
5.4. Discussion
6. Conclusions
- (1)
- The P.l. larvae colonies on MYPGP media were detected by the MCA-8 prototype of a multi-sensor recorder of the sensor with 97% efficiency.
- (2)
- Objects, such as an empty wooden chamber, an empty polystyrene chamber, MYPGP media with 1–2 days’ bacteria culture (no visible colonies), and MYPGP media with visible P.l. larvae colonies were distinguished by the MCA-8 device.
- (3)
- The M1 unit of the MCA-8 device was slightly less effective in object detection than the M2 unit.
- (4)
- A different average image obtained by the matrices of the sensors used was generated by each unit of a prototype of a multi-sensor recorder of the MCA-8 sensor signal.
- (5)
- The environment of the tested object did not significantly influence the effectiveness of the MCA-8 device. The results of the recognizability of the examined objects were satisfactory and comparable for both the wooden and polystyrene chambers.
- (6)
- The most effective classifiers proved to be: weighted method with Canberra metric (canberra.811) and kNN with the Canberra and Manhattan metric (canberra. 1nn and manhattan.1nn).
- (7)
- When applying the 5 × MCCV-5 quality classification model, the best results were obtained in the one vs. one binary classification variant.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Francioso, L. 5—Chemiresistor gas sensors using semiconductor metal oxides. In Nanosensors for Chemical and Biological Applications; Honeychurch, K.C., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 101–124. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sensors Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Ghaffari, R.; Zhang, F.; Iliescu, D.; Hines, E.; Leeson, M.; Napier, R.; Clarkson, J. Early detection of diseases in tomato crops: An electronic nose and intelligent systems approach. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Wilson, A.D. Applications of Electronic-Nose Technologies for Noninvasive Early Detection of Plant, Animal and Human Diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Ryabtsev, S.; Shaposhnick, A.; Lukin, A.; Domashevskaya, E. Application of semiconductor gas sensors for medical diagnostics. Sens. Actuators B Chem. 1999, 59, 26–29. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M.; Bak, B.; Wilk, J.; Wilde, J.; Siuda, M. Gas Sensor Array and Classifiers as a Means of Varroosis Detection. Sensors 2019, 20, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ba̧k, B.; Wilk, J.; Artiemjew, P.; Wilde, J.; Siuda, M. Diagnosis of Varroosis Based on Bee Brood Samples Testing with Use of Semiconductor Gas Sensors. Sensors 2020, 20, 4014. [Google Scholar] [CrossRef]
- Ebeling, J.; Knispel, H.; Hertlein, G.; Fünfhaus, A.; Genersch, E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 2016, 100, 7387–7395. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.D.; Munn, P.A. The worldwide health status of honey bees. Bee World 2005, 86, 88–101. [Google Scholar] [CrossRef]
- Lindström, A. Distribution of Paenibacillus larvae spores among adult honey bees (Apis mellifera) and the relationship with clinical symptoms of American foulbrood. Microb. Ecol. 2008, 56, 253–259. [Google Scholar] [CrossRef]
- Genersch, E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef]
- Djukic, M.; Brzuszkiewicz, E.; Fünfhaus, A.; Voss, J.; Gollnow, K.; Poppinga, L.; Liesegang, H.; Garcia-Gonzalez, E.; Genersch, E.; Daniel, R. How to Kill the Honey Bee Larva: Genomic Potential and Virulence Mechanisms of Paenibacillus larvae. PLoS ONE 2014, 9, e90914. [Google Scholar] [CrossRef]
- De Graaf, D.C.; Alippi, A.M.; Antúnez, K.; Aronstein, K.A.; Budge, G.; De Koker, D.; De Smet, L.; Dingman, D.W.; Evans, J.D.; Foster, L.J.; et al. Standard methods for American foulbrood research. J. Apic. Res. 2013, 52, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Beims, H.; Bunk, B.; Erler, S.; Mohr, K.I.; Spröer, C.; Pradella, S.; Günther, G.; Rohde, M.; von der Ohe, W.; Steinert, M. Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American Foulbrood. Int. J. Med. Microbiol. 2020, 310, 151394. [Google Scholar] [CrossRef] [PubMed]
- Gochnauer, T.A.; Shearer, D. Volatile Acids from Honeybee Larvae Infected with Bacillus Larvae and from a Culture of the Organism. J. Apic. Res. 1981, 20, 104–109. [Google Scholar] [CrossRef]
- Lee, S.; Lim, S.; Choi, Y.S.; lyeol Lee, M.; Kwon, H.W. Volatile disease markers of American foulbrood-infected larvae in Apis mellifera. J. Insect Physiol. 2020, 122, 104040. [Google Scholar] [CrossRef]
- Moran, J.; Melonek, J.; Purino, G.; Leyland, D.; Small, D.I.; Grassl, J. Towards an Electronic Nose for American Foulbrood. 2019. Available online: https://www.researchgate.net/publication/330410354_Towards_an_Electronic_Nose_for_American_Foulbrood (accessed on 15 July 2021).
- Schäfer, M.O.; Genersch, E.; Fünfhaus, A.; Poppinga, L.; Formella, N.; Bettin, B.; Karger, A. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet. Microbiol. 2014, 170, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Polkowski, L.; Artiemjew, P. Granular Computing in Decision Approximation; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Devroye, L.; Györfi, L.; Lugosi, G. A Probabilistic Theory of Pattern Recognition; Springer: New York, NY, USA, 1996. [Google Scholar]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; John Willey & Sons: New York, NY, USA, 1973. [Google Scholar]
- Busse, H.J.; Denner, E.B.; Lubitz, W. Classification and identification of bacteria: Current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 1996, 47, 3–38. [Google Scholar] [CrossRef]
- Bullock, N.O.; Aslanzadeh, J. Biochemical profile-based microbial identification systems. In Advanced Techniques in Diagnostic Microbiology; Springer US: New York, NY, USA, 2013; Volume 9781461439707, pp. 87–121._6. [Google Scholar] [CrossRef]
- Citron, C.A.; Rabe, P.; Dickschat, J.S. The scent of bacteria: Headspace analysis for the discovery of natural products. J. Nat. Prod. 2012, 75, 1765–1776. [Google Scholar] [CrossRef]
- Nalik, H.P.; Muller, K.D.; Ansorg, R. Rapid identification of Legionella species from a single colony by gas-liquid chromatography with trimethylsulphonium hydroxide for transesterification. J. Med. Microbiol. 1992, 36, 371–376. [Google Scholar] [CrossRef]
- Kai, M.; Haustein, M.; Molina, F.; Petri, A.; Scholz, B.; Piechulla, B. MINI-REVIEW Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 2009, 81, 1001–1012. [Google Scholar] [CrossRef]
- Elgaali, H.; Hamilton-Kemp, T.R.; Newman, M.C.; Collins, R.W.; Yu, K.; Archbold, D.D. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. J. Basic Microbiol. 2002, 42, 373–380. [Google Scholar] [CrossRef]
- Carrol, W.; Lenney, W.; Wang, T.; Španěl, P.; Alcock, A.; Smith, D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr. Pulmonol. 2005, 39, 452–456. [Google Scholar] [CrossRef]
- Liao, Y.H.; Shih, C.H.; Abbod, M.F.; Shieh, J.S.; Hsiao, Y.J. Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia. Microsyst. Technol. 2020. [Google Scholar] [CrossRef]
- Astuti, S.D.; Mukhammad, Y.; Duli, S.A.J.; Putra, A.P.; Setiawatie, E.M.; Triyana, K. Gas sensor array system properties for detecting bacterial biofilms. J. Med. Signals Sens. 2019, 9, 158–164._60_18. [Google Scholar] [CrossRef] [PubMed]
- Robacker, D.C.; Lauzon, C.R.; Patt, J.; Margara, F.; Sacchetti, P. Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: Effects of culturing medium on odour volatiles. J. Appl. Entomol. 2009, 133, 155–163. [Google Scholar] [CrossRef]
- Astantri, P.F.; Prakoso, W.S.A.; Triyana, K.; Untari, T.; Airin, C.M.; Astuti, P. Lab-Made Electronic Nose for Fast Detection of Listeria monocytogenes and Bacillus cereus. Vet. Sci. 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, V.; Talon, R.; Berdagué, J.L. Rapid discrimination of Micrococcaceae species using semiconductor gas sensors. J. Microbiol. Methods 1995, 24, 183–190. [Google Scholar] [CrossRef]
- Zetola, N.; Modongo, C.; Matlhagela, K.; Sepako, E.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Martinelli, E.; Sirugo, G.; Paolesse, R.; et al. Identification of a Large Pool of Microorganisms with an Array of Porphyrin Based Gas Sensors. Sensors 2016, 16, 466. [Google Scholar] [CrossRef] [Green Version]
- Dutta, R.; Hines, E.L.; Gardner, J.W.; Boilot, P. Bacteria classification using Cyranose 320 elcetronic nose. Biomed. Eng. Online 2002, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Genersch, E.; Forsgren, E.; Pentikä inen, J.; Ashiralieva, A.; Rauch, S.; Kilwinski, J.; Fries, I. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006, 56, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Göpel, J.W.; Hesse, N.Z. Sensors: A Comprehensive Survey; VCH Verlag: Darmstadt, Germany, 1991; pp. 341–428. [Google Scholar]
- Haugen, J.E.; Tomic, O.; Kvaal, K. A calibration method for handling the temporal drift of solid state gas-sensors. Anal. Chim. Acta 2000, 407, 23–39. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction: Electronic Nose Technology; Wiley-VCH Verlag GmbH & Co. KGaA: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Laref, R.; Ahmadou, D.; Losson, E.; Siadat, M. Orthogonal Signal Correction to Improve Stability Regression Model in Gas Sensor Systems. J. Sens. 2017, 2017, 9851406. [Google Scholar] [CrossRef] [Green Version]
- Ahmadou, D.; Laref, R.; Losson, E.; Siadat, M. Reduction of drift impact in gas sensor response to improve quantitative odor analysis. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 928–933. [Google Scholar] [CrossRef]
50∼5000 ppm, ethanol, n-hexane, benzene, acetone | ||
30∼300 ppm, ethanol, ammonia, | ||
100∼3000 ppm, R-407c, R-134a, R-410a, R-404a, R-22 | ||
1∼100 ppm | ||
1∼30 ppm, ethanol, ammonia, | ||
- | 1–30 ppm, ethanol, 0.1–3 ppm trimethylamine, 0.3–2 ppm methyl mercaptan |
1 | 23 | 24 | |
---|---|---|---|
14 | 12 | 49 | |
14 | 11 | 49 | |
9 | 11 | 50 | |
9 | 11 | 49 |
Canberra metric | |
Euclidean metric | |
Manhattan metric |
Parameter | accclass | |||
---|---|---|---|---|
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
Configuration | 1 vs. other classes | |||
Max | 0.845 | 1.000 | 1.000 | 1.000 |
The best method | ||||
Configuration | 23 vs. other classes | |||
Max | 0.697 | 0.887 | 0.970 | 0.983 |
The best method | ||||
Configuration | 24 vs. other classes | |||
Max | 0.933 | 0.994 | 0.847 | 0.864 |
The best method |
Parameter | tprclass | |||
---|---|---|---|---|
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
configuration | 1 vs. other classes | |||
max | 0.800 | 0.937 | 0.993 | 0.977 |
the best method | ||||
configuration | 23 vs. other classes | |||
max | 0.233 | 0.485 | 0.735 | 0.608 |
the best method | ||||
configuration | 24 vs. other classes | |||
max | 0.786 | 0.851 | 0.869 | 0.848 |
the best method |
Parameter | accbalanced | |||
---|---|---|---|---|
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
configuration | 1 vs. all | |||
max | 0.865 | 0.792 | 0.972 | 0.983 |
the best method | ||||
configuration | 23 vs. all | |||
max | 0.519 | 0.651 | 0.645 | 0.648 |
the best method | ||||
configuration | 24 vs. all | |||
max | 0.717 | 0.801 | 0.700 | 0.681 |
the best method |
Method | Total | ||||||
---|---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | M1 | M2 | ||
0 | 1 | 1 | 3 | 1 | 1 | 7 | |
0 | 0 | 1 | 1 | 0 | 0 | 2 | |
0 | 0 | 0 | 0 | 1 | 0 | 1 | |
4 | 1 | 1 | 0 | 2 | 3 | 11 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 1 | 2 | 0 | 2 | 5 | |
0 | 0 | 2 | 0 | 0 | 0 | 2 | |
1 | 0 | 0 | 0 | 0 | 0 | 1 | |
1 | 3 | 0 | 1 | 2 | 0 | 7 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 1 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 | 3 | 0 | 0 | 0 | 0 | 4 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
sum | 7 | 8 | 6 | 7 | 7 | 6 | 41 |
Method | ||||
---|---|---|---|---|
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
configuration | 1 vs. all | |||
acc1 | 0.845 | 0.988 | 0.978 | 0.971 |
tpr1 | 0.661 | 0.828 | 0.701 | 0.590 |
accbalanced | 0.864 | 0.968 | 0.947 | 0.936 |
configuration | 23 vs. all | |||
acc23 | 0.697 | 0.876 | 0.970 | 0.992 |
tpr23 | 0.152 | 0.167 | 0.225 | 0.202 |
accbalanced | 0.519 | 0.616 | 0.645 | 0.604 |
configuration | 24 vs. all | |||
acc24 | 0.902 | 0.994 | 0.847 | 0.864 |
tpr24 | 0.786 | 0.815 | 0.831 | 0.789 |
accbalanced | 0.717 | 0.784 | 0.701 | 0.681 |
Configuration | 23 vs. 24 | |||
---|---|---|---|---|
Method | ||||
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
0.138 | 0.423 | 0.657 | 0.702 | |
0.806 | 0.849 | 0.877 | 0.880 | |
0.450 | 0.596 | 0.676 | 0.695 |
Configuration | 1 vs. 23 | |||
---|---|---|---|---|
Method | ||||
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
0.853 | 0.910 | 1.000 | 1.000 | |
0.870 | 1.000 | 0.981 | 1.000 | |
0.851 | 0.987 | 0.987 | 1.000 |
Configuration | 1 vs. 24 | |||
---|---|---|---|---|
Method | ||||
Device | M1 | M2 | ||
Chamber | Wooden | Polystyrene | Wooden | Polystyrene |
0.913 | 1.000 | 0.973 | 1.00 | |
0.914 | 0.997 | 0.992 | 0.958 | |
0.826 | 0.996 | 0.977 | 0.894 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąk, B.; Wilk, J.; Artiemjew, P.; Wilde, J. Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors. Sensors 2021, 21, 4917. https://doi.org/10.3390/s21144917
Bąk B, Wilk J, Artiemjew P, Wilde J. Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors. Sensors. 2021; 21(14):4917. https://doi.org/10.3390/s21144917
Chicago/Turabian StyleBąk, Beata, Jakub Wilk, Piotr Artiemjew, and Jerzy Wilde. 2021. "Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors" Sensors 21, no. 14: 4917. https://doi.org/10.3390/s21144917
APA StyleBąk, B., Wilk, J., Artiemjew, P., & Wilde, J. (2021). Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors. Sensors, 21(14), 4917. https://doi.org/10.3390/s21144917