Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems
<p>The illustration of the considered MIMO-OFDM system model with the proposed DNN-aided module in blue. In the figure, CP denotes cyclic prefix; S/P denotes serial to parallel; P/S denotes parallel to serial; IFFT denotes inverse fast Fourier transform; and FFT denotes fast Fourier transform.</p> "> Figure 2
<p>The 2 time—varying channel profile with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> Hz in the 20 OFDM symbols.</p> "> Figure 3
<p>The expectation <math display="inline"><semantics> <mrow> <mi mathvariant="double-struck">E</mi> <mo>{</mo> <mi mathvariant="bold">H</mi> <msup> <mi mathvariant="bold">H</mi> <mi>H</mi> </msup> <mo>}</mo> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mi mathvariant="bold">H</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>×</mo> <msub> <mi>N</mi> <mi>R</mi> </msub> </mrow> </msup> </mrow> </semantics></math> is the channel matrix of a subcarrier. Here, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> Hz.</p> "> Figure 4
<p>The pilot structure used in the considered MIMO-OFDM system.</p> "> Figure 5
<p>The illustration of the FDNN-based channel estimation.</p> "> Figure 6
<p>The illustration of the CNN-based channel estimation.</p> "> Figure 7
<p>The illustration of the proposed RNN model.</p> "> Figure 8
<p>The structure of an LSTM cell (<b>top</b>) and the structure of the proposed bi-LSTM approach (<b>bottom</b>).</p> "> Figure 9
<p>The MSE of the channel estimate vs. the SNR level with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math> Hz.</p> "> Figure 10
<p>The MSE of the channel estimate vs. the SNR level with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> Hz.</p> "> Figure 11
<p>The MSE gap (dB) between the deep learning-based channel estimation methods and the LMMSE estimation with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math> Hz.</p> "> Figure 12
<p>The MSE gap (dB) between the deep learning-based channel estimation methods and the LMMSE estimation with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> Hz.</p> "> Figure 13
<p>The BER of the channel estimate vs. the SNR level with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math> Hz.</p> "> Figure 14
<p>The BER of the channel estimate vs. the SNR level with <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> Hz.</p> "> Figure 15
<p>The impact of the pilot density on the deep learning-based channel estimations.</p> "> Figure 16
<p>The impact of the Doppler frequency on the deep learning-based channel estimations.</p> "> Figure 17
<p>The impact of a Doppler frequency mismatch on the deep learning-based channel estimations.</p> ">
Abstract
:1. Introduction
- We construct a MIMO-OFDM system with the channel profile suggested by 3GPP for 5G-and-beyond systems, accounting for the effects of mobility and frequency selective fading. We make a practical assumption that the receiver does not know the instantaneous channels and that the transmitted data symbols should include pilot signals for the channel estimation;
- We propose a general deep neural network that assists with the traditional channel estimation technique. Our framework does not require any prior information of channel statistics. In particular, the proposed deep learning-based channel estimation framework exploits a neural network to learn the features of the actual channels by utilizing the channel estimates obtained from the LS estimation as the input;
- We provide three examples of exploiting DNN structures: a fully connected DNN, CNN, and bi-LSTM. With these typical examples, we evaluate the degree to which the system performance is improved by the assistance of a DNN in comparison to the LS estimation;
- We evaluate the performance of the DNN-based channel estimation framework by extensive numerical results and show its effectiveness by comparing it with the traditional LS estimation and LMMSE estimation, in terms of both the mean square error (MSE) and bit error rate (BER). We further analyze whether the proposed estimation is robust to Doppler effects.
2. System Model
2.1. Transmitter
2.2. 5G-and-Beyond Channel Model
2.3. Receiver
2.4. 5G Pilot Structure
3. Deep Learning-Based Channel Estimation
3.1. Motivations
3.2. Fully Connected Deep Neural Network-Based Channel Estimation
3.3. Convolutional Neural Network-Based Channel Estimation
3.4. Long Short-Term Memory-Based Channel Estimation
3.5. Computational Complexity
4. Simulation Results
4.1. Simulation Settings
4.2. Performance Comparison with the Conventional Estimators
4.3. System Performance versus Pilot Density
4.4. System Performance versus Maximum Doppler Frequency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5G | Fifth generation |
3GPP | Third generation partnership project |
BER | Bit error ratio |
CNN | Convolutional neural network |
CP | Cyclic prefix |
DNN | Deep neural network |
FDNN | Fully connected deep neural network |
FFT | Fast Fourier transform |
ISI | Inter-symbol interference |
LMMSE | Linear minimum mean square error |
LS | Least Squares |
LSTM | Long short-term memory |
GRU | Gated recurrent unit |
MIMO | Multiple-input multiple-output |
MSE | Mean square error |
OFDM | Orthogonal frequency-division multiplexing |
QAM | Quadrature amplitude modulation |
SNR | Signal to noise ratio |
TDL-C | Tapped delay line type C model |
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Van Chien, T.; Ngo, H.Q.; Chatzinotas, S.; Di Renzo, M.; Ottersten, B. Reconfigurable Intelligent Surface-Assisted Cell-Free Massive MIMO Systems Over Spatially-Correlated Channels. arXiv 2021, arXiv:2104.08648. [Google Scholar]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Smart 2020: Enabling the Low Carbon Economy in the Information Age; Technical Report; The Climate Group and Global e-Sustainability Initiative (GeSI): Brussels, Belgium, 2008.
- Ma, X.; Yang, L.; Giannakis, G. Optimal training for MIMO frequency-selective fading channels. IEEE Trans. Wirel. Commun. 2005, 4, 453–466. [Google Scholar]
- Le Ha, A.; Van Chien, T.; Nguyen, T.H.; Choi, W. Deep Learning-Aided 5G Channel Estimation. In Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Korea, 4–6 January 2021; pp. 1–7. [Google Scholar]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Found. Trends® Signal Process. 2017, 11, 154–655. [Google Scholar] [CrossRef]
- Kay, S. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint pilot design and uplink power allocation in multi-cell Massive MIMO systems. IEEE Trans. Wirel. Commun. 2018, 17, 2000–2015. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO has unlimited capacity. IEEE Trans. Wirel. Commun. 2018, 17, 574–590. [Google Scholar] [CrossRef] [Green Version]
- Van Chien, T.; Ngo, H.Q.; Chatzinotas, S.; Ottersten, B.; Debbah, M. Uplink Power Control in Massive MIMO with Double Scattering Channels. arXiv 2021, arXiv:2103.04129. [Google Scholar]
- Wu, S.; Wang, C.X.; Haas, H.; Alwakeel, M.M.; Ai, B. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun. 2014, 14, 1434–1446. [Google Scholar] [CrossRef]
- Peacock, M.; Collings, I.; Honig, M. Unified Large-System Analysis of MMSE and Adaptive Least Squares Receivers for a Class of Random Matrix Channels. IEEE Trans. Inf. Theory 2006, 52, 3567–3600. [Google Scholar] [CrossRef] [Green Version]
- Eisen, M.; Zhang, C.; Chamon, L.F.; Lee, D.D.; Ribeiro, A. Learning optimal resource allocations in wireless systems. IEEE Trans. Signal Process. 2019, 67, 2775–2790. [Google Scholar] [CrossRef] [Green Version]
- Van Chien, T.; Canh, T.N.; Björnson, E.; Larsson, E.G. Power Control in Cellular Massive MIMO with Varying User Activity: A Deep Learning Solution. IEEE Trans. Wirel. Commun. 2019, 19, 5732–5748. [Google Scholar] [CrossRef]
- O’Shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Neumann, D.; Wiese, T.; Utschick, W. Learning the MMSE channel estimator. IEEE Trans. Signal Process. 2018, 66, 2905–2917. [Google Scholar] [CrossRef] [Green Version]
- Zappone, A.; Di Renzo, M.; Debbah, M. Wireless networks design in the era of deep learning: Model-based, AI-based, or both? arXiv 2019, arXiv:1902.02647. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Wang, X.; Cao, S.; Zhao, J.; Li, X. Deep Neural Networks for Channel Estimation in Underwater Acoustic OFDM Systems. IEEE Access 2019, 7, 23579–23594. [Google Scholar] [CrossRef]
- Abdul Karim Gizzini, M.C.; Ahmad Nimr, G.F. Deep Learning Based Channel Estimation Schemes for IEEE 802.11p Standard. IEEE Access 2020, 8, 113751–113765. [Google Scholar] [CrossRef]
- Kang, J.M.; Chun, C.J.; Kim, I.M. Deep-learning-based channel estimation for wireless energy transfer. IEEE Commun. Lett. 2018, 22, 2310–2313. [Google Scholar] [CrossRef]
- Truong, K.T.; Heath, R.W. Effects of channel aging in massive MIMO systems. J. Commun. Netw. 2013, 63, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Ya, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings of the IEEE CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 1712–1722. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lee, W.; Kim, M.; Cho, D.H. Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network. IEEE Commun. Lett. 2018, 22, 1276–1279. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Ai, B.; Zhang, X. Channel Estimation for mmWave Massive MIMO With Convolutional Blind Denoising Network. IEEE Conmmun. Lett. 2020, 24, 95–98. [Google Scholar] [CrossRef]
- Yuan, J.; Ngo, H.Q.; Matthaiou, M. Machine Learning-Based Channel Prediction in Massive MIMO With Channel Aging. IEEE Trans. Wirel. Commun. 2020, 19, 2960–2973. [Google Scholar] [CrossRef]
- Dong, P.; Zhang, H.; Li, G.Y.; Gaspar, I.S.; NaderiAlizadeh, N. Deep cnn-based channel estimation for mmwave massive mimo systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoderdecoder for statistical machine translation. In Proceedings of the Empirical Methods Natural Lang. Process (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Kang, J.M.; Chun, C.J.; Kim, I.M.; Kim, D.I. Deep RNN-Based Channel Tracking for Wireless Energy Transfer System. IEEE Syst. J. 2020, 14, 4340–4343. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, J.; Zhang, Y.; Song, J. Deep Learning-Based Channel Estimation Algorithm Over Time Selective Fading Channels. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 15). Technical Report. 3GPP TR 38.901. 2018. Available online: https://www.3gpp.org/DynaReport/38901.htm (accessed on 14 July 2021).
- Cho, Y.S.; Kim, J.; Yang, W.Y.; Kang, C.G. MIMO-OFDM Wireless Communications with MATLAB; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gerald, M.; Franz, H. Fundamentals of Time-Varying Communication Channels; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- 38.211, G.T. NR; Physical Channels and Modulation. 2017. Available online: https://www.3gpp.org/DynaReport/38211.htm (accessed on 14 July 2021).
- Dahlman, E.; Parkvall, S.; Skold, J. 5G NR: The Next Generation Wireless Access Technology; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Mei, K.; Liu, J.; Zhang, X.; Wei, J. Machine Learning Based Channel Estimation: A Computational Approach for Universal Channel Conditions. arXiv 2019, arXiv:1911.03886. [Google Scholar]
- Kai, Z.; Wangmeng, Z.; Yunjin, C.; Deyu, M.; Lei, Z. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEIEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar]
- Kai, Z.; Wangmeng, Z.; Lei, Z. Beyond a Gaussian Denoiser: FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEIEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Matthiesen, B.; Zappone, A.; Besser, K.L.; Jorswieck, E.; Debbah, M. A Globally Optimal Energy-Efficient Power Control Framework and Its Efficient Implementation in Wireless Interference Networks. IEEE Trans. Signal Process. 2020, 68, 3887–3902. [Google Scholar] [CrossRef]
- Ge, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv 2014, arXiv:1402.1128. [Google Scholar]
Parameters | Values |
---|---|
MIMO | 4 × 4 |
FFT size | 256 |
Subcarrier spacing | 15 kHz |
Cyclic prefix | 24 |
Type of modulation | 16-QAM |
Channel PDP | TDL-C |
Maximum Doppler frequency | 36 Hz, 200 Hz |
Noise model | Gaussian Noise |
Sample frequency | MHz |
Layer | Nodes | |
---|---|---|
Input layer | 32 | - |
Hidden layer 1 | 64 | tanh |
Hidden layer 2 | 64 | tanh |
Hidden layer 3 | 64 | tanh |
Output layer | 32 | - |
Layer | Kernel | |
---|---|---|
Input layer | 16 × 256 | - |
Conv1 layer | 3 × 3 × 64 | ReLU |
Conv2 layer | 3 × 3 × 64 | ReLU |
Conv3 layer | 3 × 3 × 64 | ReLU |
Conv4 layer | 3 × 3 × 32 | ReLU |
Linear layer | - | - |
Parameter | Value |
---|---|
Number of input feature layers | 32 |
Number of LSTM layers | 2 |
Hidden layer size | 100 |
Sequence length | 256 |
Activation function | Tanh and Sigmoid |
Parameters | Values |
---|---|
Optimizer | Adam |
Maximum number of epoches | 100 |
Mini-bath size | 32 |
Training error | |
Gradient descent accuracy | |
Learning rate | |
Maximum validation failures | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.A.; Van Chien, T.; Nguyen, T.H.; Choo, H.; Nguyen, V.D. Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems. Sensors 2021, 21, 4861. https://doi.org/10.3390/s21144861
Le HA, Van Chien T, Nguyen TH, Choo H, Nguyen VD. Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems. Sensors. 2021; 21(14):4861. https://doi.org/10.3390/s21144861
Chicago/Turabian StyleLe, Ha An, Trinh Van Chien, Tien Hoa Nguyen, Hyunseung Choo, and Van Duc Nguyen. 2021. "Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems" Sensors 21, no. 14: 4861. https://doi.org/10.3390/s21144861
APA StyleLe, H. A., Van Chien, T., Nguyen, T. H., Choo, H., & Nguyen, V. D. (2021). Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems. Sensors, 21(14), 4861. https://doi.org/10.3390/s21144861