Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications
<p>The proposed system architecture utilizes a hybrid combination of Zigbee and Wi-Fi network by considering local data collector serves by several coordinator nodes.</p> "> Figure 2
<p>A sample of one-day measurement of PM2.5 collected and processed using DCT compression.</p> "> Figure 3
<p>The proposed PM2.5 prediction system utilizes LSTM model on compressed datasets.</p> "> Figure 4
<p>The FL scheme provides privacy preservation by training the dataset locally without exposing them directly over the network.</p> "> Figure 5
<p>Comparison between (<b>a</b>) error rate and (<b>b</b>) data saving ratio with various <span class="html-italic">σ</span> on the reconstructed data. Meanwhile (<b>c</b>) evaluates the optimal value of <span class="html-italic">σ</span> that achieves efficient data generation while maintaining data fidelity.</p> "> Figure 6
<p>The <span class="html-italic">MAE</span> loss for eight different training schemes during 50 communication rounds.</p> "> Figure 7
<p>The PM2.5 prediction result utilizing (<b>a</b>) CL compared with (<b>b</b>) FCL 100–DCT using the global model that is trained in 50 epochs.</p> "> Figure 8
<p>Simulation of data generation on WSN that utilizes different schemes with varying data rates.</p> "> Figure A1
<p>(<b>a</b>) The schematic of the prototype. (<b>b</b>–<b>d</b>) The deployment of the sensory nodes during real-time measurements. (<b>e</b>) The prototype that is used in data acquisition process involving a coordinator node (white) and three sensor nodes (blue). The sensory nodes use ATmega 32u microcontrollers while the coordinator nodes use Raspberry Pi 3 B+.</p> "> Figure A2
<p>The PM2.5 prediction interface uses an LSTM model that is trained across decentralized coordinators.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Compressed Sensing
2.2. Privacy Issues in Smart City Sensing
2.3. PM2.5 Prediction System
3. Designing of Sensor Nodes Based on Compressed Sensing
3.1. Compression Algorithm
- Convert the data from the spatial domain into the frequency domain, the DCT formula is used as follows:
- Calculate energy concentration among the DCT vector to define the frequency threshold for distinguishing values. The DCT vectors y are sorted in descending order which is denoted as: . Define i, which determines how many frequencies that are required to represent the amount of the energy in the signal by using energy concentration threshold (σ), where 0 < σ < 1.
- Apply an IDCT formula to reconstruct the data from the remaining DCT vectors, defined as follows:
3.2. Design of Hardware Prototype
3.3. Software Development
Algorithm 1 Compressed Sensing |
Input: Command (c) Output: Compressed Data (y) |
function Compression () Serial.interrupt () if (Serial.read (c) == true) sleep (false) # activate the node PMS5003.sleep (false) # activate the sensor x = PMS5003.read{x1, x2, x3, …, xN} # read the sensor y = dct(x) # compress the data PMS5003.sleep (true) sleep (true) end if return: y |
4. Privacy-Preserving Prediction Model with Federated Learning
4.1. LSTM for PM 2.5 Prediction
4.2. Federated Learning for PM2.5 Prediction
Algorithm 2 Federated Learning for PM2.5 prediction with Federated Average (FedAvg) |
Input:
- Dataset - N number of the client (NB-IoT Sensor Node Coordinator) - Number of communication round K - Initial Global Model Output: Final Global Model |
function Federated_Learning () ← randomize parameters # initialize global model (1) for k = 1 to K do for n = 1 to N do # deploy global model (2) # train local model (3) end for # update global model (4) end for return: a global model |
5. Experiments and Results
5.1. Evaluation
- Data saving ratio (ς): The smaller the data saving ratio, the more effective the compression algorithm is. The data saving ratio is performed by using the following equation:
- Error rate (ε): The smaller the error rate, the more effective the compression algorithm is. The error rate calculation performed to a set of reconstruction data, is given by:
- Mean absolute error (MAE): is a loss function on neural network model that can be applied to data with large outliers. This value is calculated as the average of the absolute difference between the actual and the predicted values. The model can be updated to use the MAE loss function. The MAE performed by each FL variants, is given by:
5.2. Dataset Characteristic
5.3. Tuning Energy Concentration Threshold
5.4. FCL Performance
5.5. Security Analysis
6. Discussion
- (1)
- WSN data generation is significantly compacted by the CS in comparison to conventional approaches without the CS. The efficiency of the CS in reducing the data is the key factor in the computation efficiency of the FCL.
- (2)
- Data privacy is guaranteed by the FCL scheme at the top layer, while security at the bottom layer is maintained by the CS techniques.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- State of Global Air 2018. A Special Report on Global Exposure to Air Pollution and Its Disease Burden. Available online: https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf (accessed on 1 February 2021).
- Chen, C.-H.; Wu, C.-D.; Chiang, H.-C.; Chu, D.; Lee, K.-Y.; Lin, W.-Y.; Yeh, J.-I.; Tsai, K.-W.; Guo, Y.-L.L. The effects of fine and coarse particulate matter on lung function among the elderly. Sci. Rep. 2019, 9, 14790. [Google Scholar] [CrossRef]
- Consonni, D.; Carugno, M.; De Matteis, S.; Nordio, F.; Randi, G.; Bazzano, M.; Caporaso, N.E.; Tucker, M.A.; Bertazzi, P.A.; Pesatori, A.C.; et al. Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study. PLoS ONE 2018, 13, e0203539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Sun, G.; Geng, T.; Zheng, B. Compressive Sparse Data Gathering With Low-Rank and Total Variation in Wireless Sensor Networks. IEEE Access 2019, 7, 155242–155250. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y. Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography. IEEE Access 2018, 6, 27637–27650. [Google Scholar] [CrossRef]
- Quer, G.; Masiero, R.; Pillonetto, G.; Rossi, M.; Zorzi, M. Sensing, Compression, and Recovery for WSNs: Sparse Signal Modeling and Monitoring Framework. IEEE Trans. Wirel. Commun. 2012, 11, 3447–3461. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liu, L.; Hu, B.; Lei, T.; Ma, H. Federated Region-Learning for Environment Sensing in Edge Computing System. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2192–2204. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Zhou, D.; Li, N.; Shi, J. Differential Evolution Based Layer-Wise Weight Pruning for Compressing Deep Neural Networks. Sensors 2021, 21, 880. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.M.; Gunduz, D. Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air. IEEE Trans. Signal Process. 2020, 68, 2155–2169. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Tong, S.; Gao, H.; Shen, G.; Wang, K.; Collotta, M.; You, I.; Das, S.K. Mobile Edge Cooperation Optimization for Wearable Internet of Things: A Network Representation-Based Framework. IEEE Trans. Ind. Inform. 2021, 17, 5050–5058. [Google Scholar] [CrossRef]
- Sharma, V.; You, I.; Andersson, K.; Palmieri, F.; Rehmani, M.H.; Lim, J. Security, Privacy and Trust for Smart Mobile- Internet of Things (M-IoT): A Survey. IEEE Access 2020, 8, 167123–167163. [Google Scholar] [CrossRef]
- Qie, Y.; Hao, C.; Song, P. Wireless Transmission Method for Large Data Based on Hierarchical Compressed Sensing and Sparse Decomposition. Sensors 2020, 20, 7146. [Google Scholar] [CrossRef] [PubMed]
- Pagan, J.; Fallahzadeh, R.; Pedram, M.; Risco-Martin, J.L.; Moya, J.M.; Ayala, J.L.; Ghasemzadeh, H. Toward Ultra-Low-Power Remote Health Monitoring: An Optimal and Adaptive Compressed Sensing Framework for Activity Recognition. IEEE Trans. Mob. Comput. 2019, 18, 658–673. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Yang, K.; Yang, Z. Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT. IEEE Trans. Ind. Inform. 2017, 14, 2210–2219. [Google Scholar] [CrossRef]
- Asad, M.; Moustafa, A.; Yu, C. A Critical Evaluation of Privacy and Security Threats in Federated Learning. Sensors 2020, 20, 7182. [Google Scholar] [CrossRef]
- Davis, B.D.; Mason, J.C.; Anwar, M. Vulnerability Studies and Security Postures of IoT Devices: A Smart Home Case Study. IEEE Internet Things J. 2020, 7, 10102–10110. [Google Scholar] [CrossRef]
- Brown, K.W.; A Sarnat, J.; Koutrakis, P. Concentrations of PM2.5 mass and components in residential and non-residential indoor microenvironments: The Sources and Composition of Particulate Exposures study. J. Expo. Sci. Environ. Epidemiol. 2011, 22, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Qi, M.; Chen, Y.; Shen, H.; Liu, J.; Huang, Y.; Chen, H.; Liu, W.; Wang, X.; Liu, J.; et al. Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ. Pollut. 2015, 205, 307–314. [Google Scholar] [CrossRef]
- Alablani, I.; Alenazi, M. EDTD-SC: An IoT Sensor Deployment Strategy for Smart Cities. Sensors 2020, 20, 7191. [Google Scholar] [CrossRef]
- Boubrima, A.; Bechkit, W.; Rivano, H. Optimal WSN Deployment Models for Air Pollution Monitoring. IEEE Trans. Wirel. Commun. 2017, 16, 2723–2735. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Luo, J.; Rosenberg, C. Compressed Data Aggregation: Energy-Efficient and High-Fidelity Data Collection. IEEE/ACM Trans. Netw. 2012, 21, 1722–1735. [Google Scholar] [CrossRef]
- Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals. IEEE J. Biomed. Health Inform. 2016, 21, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, K.; Zhang, C.; Montoya, J.; Chen, G.-H. Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety of Data Acquisition Conditions. IEEE Trans. Med. Imaging 2019, 38, 2469–2481. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Moon, A.; Kim, J.; Zhang, J.; Son, S.W. Evaluating fidelity of lossy compression on spatiotemporal data from an IoT enabled smart farm. Comput. Electron. Agric. 2018, 154, 304–313. [Google Scholar] [CrossRef]
- Chen, H.-C.; Putra, K.T.; Tseng, S.-S.; Chen, C.-L.; Lin, J.C.-W. A spatiotemporal data compression approach with low transmission cost and high data fidelity for an air quality monitoring system. Future Gener. Comput. Syst. 2020, 108, 488–500. [Google Scholar] [CrossRef]
- Garcia-Sobrino, J.; Serra-Sagrista, J.; Laparra, V.; Calbet, X.; Camps-Valls, G. Statistical Atmospheric Parameter Retrieval Largely Benefits From Spatial–Spectral Image Compression. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 2213–2224. [Google Scholar] [CrossRef]
- Kotenko, I.; Saenko, I.; Branitskiy, A. Applying Big Data Processing and Machine Learning Methods for Mobile Internet of Things Security Monitoring. J. Internet Serv. Inf. Secur. 2018, 8, 54–63. [Google Scholar] [CrossRef]
- Bordel, B.; Alcarria, R. Physical Unclonable Functions based on silicon micro-ring resonators for secure signature delegation in Wireless Sensor Networks. J. Internet Serv. Inf. Secur. 2018, 8, 40–53. [Google Scholar] [CrossRef]
- Chen, I.-R.; Guo, J.; Wang, D.-C.; Tsai, J.J.P.; Al-Hamadi, H.; You, I. Trust-Based Service Management for Mobile Cloud IoT Systems. IEEE Trans. Netw. Serv. Manag. 2019, 16, 246–263. [Google Scholar] [CrossRef]
- Hu, S.; Liu, L.; Fang, L.; Zhou, F.; Ye, R. A Novel Energy-Efficient and Privacy-Preserving Data Aggregation for WSNs. IEEE Access 2020, 8, 802–813. [Google Scholar] [CrossRef]
- Feher, M.; Yazdani, N.; Aranha, D.F.; Lucani, D.E.; Hansen, M.T.; Vester, F.E. Side Channel Security of Smart Meter Data Compression Techniques. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Tempe, AZ, USA, 11–13 November 2020; pp. 1–6. [Google Scholar]
- Ren, J.; Wang, H.; Hou, T.; Zheng, S.; Tang, C. Federated Learning-Based Computation Offloading Optimization in Edge Computing-Supported Internet of Things. IEEE Access 2019, 7, 69194–69201. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.J.Q.; Kang, J.; Niyato, D.; Zhang, S. Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach. IEEE Internet Things J. 2020, 7, 7751–7763. [Google Scholar] [CrossRef]
- You, I.; Fung, C.; Baek, J.; Leung, V.C.M. IEEE Access Special Section Editorial: Security and Privacy in Applications and Services for Future Internet of Things. IEEE Access 2018, 6, 39398–39400. [Google Scholar] [CrossRef]
- Zhou, C.; Fu, A.; Yu, S.; Yang, W.; Wang, H.; Zhang, Y. Privacy-Preserving Federated Learning in Fog Computing. IEEE Internet Things J. 2020, 7, 10782–10793. [Google Scholar] [CrossRef]
- Chio, C.-P.; Lo, W.-C.; Tsuang, B.-J.; Hu, C.-C.; Ku, K.-C.; Chen, Y.-J.; Lin, H.-H.; Chan, C.-C. Health impact assessment of PM2.5 from a planned coal-fired power plant in Taiwan. J. Formos. Med. Assoc. 2019, 118, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Liou, N.-C.; Luo, C.-H.; Mahajan, S.; Chen, L.-J. Why Is Short-Time PM2.5 Forecast Difficult? The Effects of Sudden Events. IEEE Access 2019, 8, 12662–12674. [Google Scholar] [CrossRef]
- Ferreira, L.N.; Vega-Oliveros, D.A.; Cotacallapa, M.; Cardoso, M.F.; Quiles, M.G.; Zhao, L.; Macau, E.E.N. Spatiotemporal data analysis with chronological networks. Nat. Commun. 2020, 11, 4036. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Tian, W.; Tian, Y.; Yang, Q.; Wang, Y.; Zhang, J. The Forecasting of PM2.5 Using a Hybrid Model Based on Wavelet Transform and an Improved Deep Learning Algorithm. IEEE Access 2019, 7, 142814–142825. [Google Scholar] [CrossRef]
- Song, S.; Lam, J.C.K.; Han, Y.; Li, V.O.K. ResNet-LSTM for Real-Time PM2.5 and PM10 Estimation Using Sequential Smartphone Images. IEEE Access 2020, 8, 220069–220082. [Google Scholar] [CrossRef]
- Mitra, D.; Zanddizari, H.; Rajan, S. Investigation of Kronecker-Based Recovery of Compressed ECG Signal. IEEE Trans. Instrum. Meas. 2020, 69, 3642–3653. [Google Scholar] [CrossRef]
- Su, B.; Gutierrez-Farewik, E.M. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network. Sensors 2020, 20, 7127. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Li, C.; Danish, M.; Rubaiee, S.; Tang, G.; Gan, Z.; Ahmed, A. Hybrid Bidirectional LSTM Model for Short-Term Wind Speed Interval Prediction. IEEE Access 2020, 8, 182283–182294. [Google Scholar] [CrossRef]
Properties | Sensor Node | Coordinator Node | Aggregation Server |
---|---|---|---|
Processor | Single Core ATmega 32u | Quad Core Broadcom BCM2837B0 | Dual 20-Core Intel Xeon E5-2698 v4 |
Architecture | 8-bit AVR | ARMv8 | x86-64 |
Clock speed | 16 MHz | 1.4 GHz | 2.2 GHz |
RAM | 2.56 KB | 1 GB | 256 GB |
Network interface | Serial XBeePRO S2C | Serial XBeePRO S2C Wi-Fi 2.4 GHz Gigabit LAN | 10 Gigabit LAN |
Storage | EEPROM 1 KB | MicroSD 32 GB | SSD 1.92 TB |
PM Sensor | Plantower PMS5003 | - | - |
Power consumption (watt) | 0.9 | 3.6 | 1600 |
Dataset | Variable | SD | NSD | Skewness | Kurtosis |
---|---|---|---|---|---|
Airbox (1000 nodes 78.5 MB) | PM1.0 | 12.315 | 0.018 | 3.173 | 78.599 |
PM2.5 | 17.513 | 0.022 | 3.184 | 76.301 | |
PM10 | 22.947 | 0.021 | 1.969 | 42.091 | |
Temperature | 3.401 | 0.074 | 0.142 | 0.853 | |
Humidity | 13.192 | 0.167 | 0.117 | −0.374 | |
CS Prototype (4 nodes 437 KB) | PM1.0 | 1.949 | 0.452 | 0.897 | 0.546 |
PM2.5 | 1.845 | 0.223 | 0.692 | 0.980 | |
PM10 | 2.345 | 0.167 | 0.622 | 0.977 | |
Temperature | 6.385 | 0.336 | 0.210 | 0.649 | |
Humidity | 17.060 | 0.247 | 1.044 | 0.336 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, K.T.; Chen, H.-C.; Prayitno; Ogiela, M.R.; Chou, C.-L.; Weng, C.-E.; Shae, Z.-Y. Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors 2021, 21, 4586. https://doi.org/10.3390/s21134586
Putra KT, Chen H-C, Prayitno, Ogiela MR, Chou C-L, Weng C-E, Shae Z-Y. Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors. 2021; 21(13):4586. https://doi.org/10.3390/s21134586
Chicago/Turabian StylePutra, Karisma Trinanda, Hsing-Chung Chen, Prayitno, Marek R. Ogiela, Chao-Lung Chou, Chien-Erh Weng, and Zon-Yin Shae. 2021. "Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications" Sensors 21, no. 13: 4586. https://doi.org/10.3390/s21134586
APA StylePutra, K. T., Chen, H.-C., Prayitno, Ogiela, M. R., Chou, C.-L., Weng, C.-E., & Shae, Z.-Y. (2021). Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors, 21(13), 4586. https://doi.org/10.3390/s21134586