Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping
<p>SEM images of undoped ZnO (<b>a</b>) and Mn-doped ZnO (<b>b</b>) nanostructures. Modified from Reference [<a href="#B65-sensors-21-04425" class="html-bibr">65</a>].</p> "> Figure 2
<p>SEM images (scale bars: 2 μm) of the powder sample. (<b>a</b>) Undoped ZnO, (<b>b</b>) Ni-doped ZnO (5 at. %), and (<b>c</b>) Ni-doped ZnO (10 at. %). Note that in insets scale bars: 1 μm. Modified from Reference [<a href="#B8-sensors-21-04425" class="html-bibr">8</a>].</p> "> Figure 3
<p>Growth process of Al-doped ZnO nanorods on microcantilever consisting of (<b>a</b>) ZnO seeds deposition; (<b>b</b>) the growth of ZnO nanorods; (<b>c</b>) Al doping in ZnO nanorods using radio frequency sputtering. Modified from Reference [<a href="#B69-sensors-21-04425" class="html-bibr">69</a>].</p> "> Figure 4
<p>Gas sensing mechanism and energy band of zinc oxide doped before and after CO exposure nanostructures. Modified from Reference [<a href="#B57-sensors-21-04425" class="html-bibr">57</a>].</p> "> Figure 5
<p>Response to 50 ppm CO of the Ga-doped ZnO nanoparticles as a function of the temperature. Ga concentration of samples correspond at 0, 1, 3 and 5 at. %. Obtained from Reference [<a href="#B77-sensors-21-04425" class="html-bibr">77</a>].</p> "> Figure 6
<p>Increased sensitivity as a function of Ca dopant concentration. Obtained from Reference [<a href="#B83-sensors-21-04425" class="html-bibr">83</a>].</p> "> Figure 7
<p>Optimized structures of CO adsorption on undoped Zn<sub>12</sub>O<sub>12</sub> (<b>a</b>) and Ga-doped Zn<sub>11</sub>O<sub>12</sub> (<b>b</b>) clusters. Obtained from Reference [<a href="#B96-sensors-21-04425" class="html-bibr">96</a>].</p> "> Figure 8
<p>CO adsorption on the Co-doped ZnO (0001) surface. (<b>a</b>) Co-doped ZnO (0001) surface. (<b>b</b>) CO molecule, (<b>c</b>) CO adsorption on the Co-doped ZnO (0001) surface. Note that distances are in Å. Modified from Reference [<a href="#B100-sensors-21-04425" class="html-bibr">100</a>].</p> "> Figure 9
<p>SEM images of bare (<b>a</b>) and Co-doped (<b>b</b>) ZnO. Obtained from Reference [<a href="#B100-sensors-21-04425" class="html-bibr">100</a>].</p> "> Figure 10
<p>FE-SEM images for (<b>a</b>) ZnO (pure) (<b>b</b>) 0.5 wt. % Cr/ZnO. Note that scale bars: 100 nm. Obtained from Reference [<a href="#B101-sensors-21-04425" class="html-bibr">101</a>].</p> ">
Abstract
:1. Introduction
2. Experimental Studies
2.1. Transition Metals
2.2. Boron Group
2.3. Alkaline Earth Metals
3. Density Functional Theory Studies on Doped ZnO-Based CO Sensors
4. Combined DFT and Experimental Investigations of Doped ZnO-Based CO Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Majhi, S.M.; Lee, H.-J.; Choi, H.-N.; Cho, H.-Y.; Kim, J.-S.; Lee, C.-R.; Yu, Y.-T. Construction of novel hybrid PdO-ZnO p-n heterojunction nanostructures as a high-response sensor for acetaldehyde gas. CrystEngComm 2019, 21, 5084–5094. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low Voltage Driven Sensors Based on ZnO Nanowires for Room Temperature Detection of NO2 and CO Gases. ACS Appl. Mater. Interfaces 2019, 11, 24172–24183. [Google Scholar] [CrossRef]
- Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Callone, E.; Carturan, G. Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications. Sens. Actuators B Chem. 2008, 132, 224–233. [Google Scholar] [CrossRef]
- Majder-Łopatka, M.; Węsierski, T.; Dmochowska, A.; Salamonowicz, Z.; Polańczyk, A. The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors. Sustainability 2019, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Hjiri, M.; El Mir, L.; Leonardi, S.G.; Pistone, A.; Mavilia, L.; Neri, G. Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 2014, 196, 413–420. [Google Scholar] [CrossRef]
- Luo, N.; Zhang, B.; Zhang, D.; Xu, J. Enhanced CO sensing properties of Pd modified ZnO porous nanosheets. Chin. Chem. Lett. 2020, 31, 2033–2036. [Google Scholar] [CrossRef]
- Shirage, P.M.; Rana, A.K.; Kumar, Y.; Sen, S.; Leonardi, S.G.; Neri, G. Sr- and Ni-doping in ZnO nanorods synthesized by a simple wet chemical method as excellent materials for CO and CO2 gas sensing. RSC Adv. 2016, 6, 82733–82742. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Dhal, G.C. Materials progress in the control of CO and CO2 emission at ambient conditions: An Overview. Mater. Sci. Energy Technol. 2019, 2, 607–623. [Google Scholar] [CrossRef]
- Bandari, A.J.; Nasirian, S. Carbon monoxide gas sensing features of zinc oxide nanoneedles: Practical selectivity and long-term stability. J. Mater. Sci. Mater. Electron. 2019, 30, 10073–10081. [Google Scholar] [CrossRef]
- Fitriana, F.; Septiani, N.L.W.; Irzaman, I.; Ferdiansjah, F.; Fahmi, M.Z.; Adhika, D.R.; Suyatman, S.; Nugraha, N.; Yuliarto, B. Preparation of (002)-oriented ZnO for CO gas sensor. Mater. Res. Express. 2019, 6, 064003. [Google Scholar] [CrossRef]
- Molavi, R.; Sheikhi, M.H. Low temperature carbon monoxide gas sensor based on Ag-CO3O4 thick film nanocomposite. Mater. Lett. 2018, 233, 74–77. [Google Scholar] [CrossRef]
- Hung, N.L.; Kim, H.; Hong, S.-K.; Kim, D. Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots. Sens. Actuators B Chem. 2010, 151, 127–132. [Google Scholar] [CrossRef]
- Mandal, B.; Maiti, S.; Aaryashree; Siddharth, G.; Das, M.; Agarwal, A.; Mukherjee, S. Organo-di-benzoic-acidified ZnO Nanohybrids for Highly Selective Detection of CO at Low Temperature. J. Phys. Chem. C 2020, 124, 7307–7316. [Google Scholar] [CrossRef]
- Rodlamul, P.; Tamura, S.; Imanaka, N. Effect of p- or n-Type Semiconductor on CO Sensing Performance of Catalytic Combustion-Type CO Gas Sensor with CeO2-ZrO2-ZnO Based Catalyst. Bull. Chem. Soc. Jpn. 2019, 92, 585–591. [Google Scholar] [CrossRef]
- Wang, C.N.; Li, Y.; Gong, F.; Zhang, Y.; Fang, S.; Zhang, H. Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 2020, 20, 1553–1567. [Google Scholar] [CrossRef]
- Susanti, D.; Haliq, R.; Purwaningsih, H.; Noerochiem, L.; Kusuma, G.E. The Effect of Calcination Temperature Variation on the Sensitivity of CO Gas Sensor from Zinc Oxide Material by Hydrothermal Process. Mod. Appl. Sci. 2015, 9, 114–200. [Google Scholar] [CrossRef]
- Vijayakumar; Shivaraj, B.W.; Manjunatha, C.; Abhishek, B.; Nagaraju, G.; Panda, P.K. Hydrothermal Synthesis of ZnO Nanostructures for CO Gas Sensing. Sens. Int. 2020, 1, 100018. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Jin, L.; Zhang, H.; Li, Y.; Zhou, Q.; Zen, W. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers. Sens. Actuators B Chem. 2020, 312, 127998. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Meng, X.; Zhang, Z.; Cao, J. A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surf. Interfaces 2021, 24, 101110. [Google Scholar] [CrossRef]
- Ani, A.; Poornesh, P.; Nagaraja, K.K.; Kolesnikov, E.; Shchetinin, I.V.; Antony, A.; Dwivedi, J. Tuning of CO gas sensing performance of spray pyrolyzed ZnO thin films by electron beam irradiation. Mat. Sci. Semicon. Proc. 2020, 119, 105249. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kumar, D. Gas Sensing Properties of ZnO-SnO2 Nanocomposite. Asian J. Chem. 2019, 32, 64–68. [Google Scholar] [CrossRef]
- Peng, M.; Lv, D.; Xiong, D.; Shen, W.; Song, W.; Tan, R. Facile Preparation of a ZnO/SnO2-Based Gas Sensor Array by Inkjet Printing for Gas Analysis with BPNN. J. Electron. Mater. 2019, 48, 2373–2381. [Google Scholar] [CrossRef]
- Thakare, N.B.; Raghuwanshi, F.C.; Kalyamwar, V.S.; Tamgadge, Y.S. Reduced graphene oxide-ZnO composites based gas sensors: A review. AIP Conf. Proc. 2018, 1953, 030057. [Google Scholar] [CrossRef]
- Xia, Y.; Li, R.; Chen, R.; Wang, J.; Xiang, L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors 2018, 18, 1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Du, W.; Wang, F. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. J. Mater. Chem. C 2020, 8, 13169–13188. [Google Scholar] [CrossRef]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.-G.; Li, Y.-Q.; Song, Z.-H. Gas Sensing Performances of ZnO Hierarchical Structures for Detecting Dissolved Gases in Transformer Oil: A Mini Review. Front. Chem. 2018, 6, 508. [Google Scholar] [CrossRef]
- Pineda-Reyes, A.M.; Olvera, M.d.l.L. Synthesis of ZnO nanoparticles from water-in-oil (w/o) microemulsions. Mater. Chem. Phys. 2018, 203, 141–147. [Google Scholar] [CrossRef]
- Fan, C.; Wang, Q.; Li, L.; Zhang, S.; Zhu, Y.; Zhang, X.; Ma, M.; Liu, R.; Wang, W. Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory. Appl. Phys. Lett. 2008, 92, 101917. [Google Scholar] [CrossRef]
- Toranjizadeh, H.; Shabani, P.; Ramezani, A. Ethanol gas sensing improvement at high humidity levels and optical features using Ba-doped ZnO NPs. Mater. Res. Express 2019, 6, 095904. [Google Scholar] [CrossRef]
- Narayana, A.; Bhat, S.A.; Fathima, A.; Lokesh, S.V.; Surya, S.G.; Yelamaggad, C.V. Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Adv. 2020, 10, 13532–13542. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Chávez, H.; Cruz-Martínez, H.; Montejo-Alvaro, F.; Farías, R.; Hernández-Rodríguez, Y.M.; Guillen-Cervantes, A.; Cigarroa-Mayorga, O.E. The formation of ZnO structures using thermal oxidation: How a previous chemical etching favors either needle-like or cross-linked structures. Mat. Sci. Semicon. Proc. 2020, 108, 104888. [Google Scholar] [CrossRef]
- Alexandru, E.I.; Serban, I.A. Metal Oxides-Based Semiconductors for Biosensors Applications. Front. Chem. 2020, 8, 354. [Google Scholar] [CrossRef]
- Fallah, H.; Asadishad, T.; Shafiei, M.; Shokri, B.; Javadianaghezi, S.; Mohammed, W.S.; Hamidi, S.M. Utilizing ZnO Nanorods for CO gas detection by SPR technique. Opt. Commun. 2020, 463, 125490. [Google Scholar] [CrossRef]
- Zhou, W.-D.; Dastan, D.; Li, J.; Yin, X.-T.; Wang, Q. Discriminable Sensing Response Behavior to Homogeneous Gases Based on n-ZnO/p-NiO Composites. Nanomaterials 2020, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Govardhan, K.; Grace, A.N. Metal/metal oxide doped semiconductor based metal oxide gas sensors—A review. Sens Lett. 2016, 14, 741–750. [Google Scholar] [CrossRef]
- Li, Z.; Qin, W.; Zhao, W.; Wu, X. Synthesis of flower-like Al doped ZnO microstructures by hydrothermal process and analysis of their gas sensing properties. Funct. Mater. Lett. 2014, 7. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M. Gas sensing properties of Al-doped ZnO for UV-activated CO detection. J. Phys. D Appl. Phys. 2016, 49, 135502. [Google Scholar] [CrossRef]
- Shingange, K.; Tshabalala, Z.P.; Dhonge, B.P.; Ntwaeaborwa, O.M.; Motaung, D.E.; Mhlongo, G.H. 0D to 3D ZnO nanostructures and their luminescence, magnetic and sensing properties: Influence of pH and annealing. Mater. Res. Bull. 2017, 85, 52–63. [Google Scholar] [CrossRef]
- Liu, X.; Pan, K.; Li, W.; Hu, D.; Liu, S.; Wang, Y. Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol-gel method under different heat treatments. Ceram. Int. 2014, 40, 9931–9939. [Google Scholar] [CrossRef]
- Hou, Y.; Jayatissa, A.H. Effect of laser irradiation on gas sensing properties of sol-gel derived nanocrystalline Al-doped ZnO thin films. Thin Solid Film. 2014, 562, 585–591. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; Mir, L.E.; Bonavita, A.; Leonardi, S.G.; Neri, G. Effect of Ga-doping and UV Radiation on High Performance CO Sensing of ZnO Nano-powders. Procedia Eng. 2014, 87, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Jayatissa, A.H. Low resistive gallium doped nanocrystalline zinc oxide for gas sensor application via sol-gel process. Sens. Actuators B Chem. 2014, 204, 310–318. [Google Scholar] [CrossRef]
- Rashid, T.-R.; Phan, D.-T.; Chung, G.-S. Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuators B Chem. 2014, 193, 869–876. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, K.; Park, S.; Kim, Y.; Kim, S.; Kim, S.-I. Characteristics of Ga and Ag-doped ZnO-based nanowires for an ethanol gas sensor prepared by hot-walled pulsed laser deposition. Res. Chem. Intermed. 2014, 40, 97–103. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Young, S.-J.; Ji, L.-W.; Chu, T.-T.; Lam, K.-T.; Hsiao, Y.-J.; Kuo, T.-H. Characteristics of Gas Sensors Based on Co-doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020, 167, 117503. [Google Scholar] [CrossRef]
- Bhati, V.S.; Ranwa, S.; Kumar, M. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures. AIP Conf. Proc. 2018, 1942, 050059. [Google Scholar] [CrossRef]
- Herrera-Rivera, R.; Morales-Bautista, J.; Pineda-Reyes, A.M.; Rojas-Chávez, H.; Maldonado, A.; Vilchis, H.; Olvera, M. Influence of Cu and Ni dopants on the sensing properties of ZnO gas sensor. J. Mater. Sci. Mater. Electron. 2021, 32, 133–140. [Google Scholar] [CrossRef]
- Zhu, D.; Ma, H.; Zhen, Q.; Xin, J.; Tan, L.; Zhang, C.; Wang, X.; Xiao, B. Hierarchical flower-like zinc oxide nanosheets in-situ growth on three-dimensional ferrocene-functionalized graphene framework for sensitive determination of epinephrine and its oxidation derivative. Appl. Surf. Sci. 2020, 526, 146721. [Google Scholar] [CrossRef]
- Hallajzadeh, A.M.; Abdizadeh, H.; Taheri, M.; Golobostanfard, M.R. Hierarchical porous Ga doped ZnO films synthesized by sol-electrophoretic deposition. Ceram. Int. 2020, 46 Pt B, 12665–12674. [Google Scholar] [CrossRef]
- Suwanboon, S.; Amornpitoksuk, P.; Haidoux, A.; Tedenac, J.C. Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J. Alloys Compd. 2008, 462, 335–339. [Google Scholar] [CrossRef]
- Arunkumar, S.; Hou, T.; Kim, Y.; Choi, B.; Park, S.H.; Jung, S.; Lee, D. Au Decorated ZnO hierarchical architectures: Facile synthesis, tunablemorphology and enhanced CO detection at room temperature. Sens. Actuators B 2017, 243, 990–1001. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhou, L.; Liu, D.; Liu, F.; Liu, F.; Liang, X.; Yan, X.; Gao, Y.; Lu, G. The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species. Sens. Actuators B Chem. 2018, 273, 991–998. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Poloju, M.; Jayababu, N.; Ramana Reddy, M.V. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 2018, 227, 61–67. [Google Scholar] [CrossRef]
- Hassan, M.M.; Khan, W.; Mishra, P.; Islam, S.S.; Naqvi, A.H. Enhancement of the alcohol gas sensitivity in Cr doped ZnO gas sensor. Mat. Res. Bull. 2017, 93, 391–400. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Fu, Y.Q. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room-temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaduman, I.; Yildirim, M.A.; Yildirim, S.T.; Ateş, A.; Özdemir, Y.A.; Acar, S. The effect of different doping elements on the CO gas sensing properties of ZnO nanostructures. J. Mater. Sci. Mater. Electron. 2017, 28, 18154–18163. [Google Scholar] [CrossRef]
- Bahşi, Z.B.; Oral, A.Y. Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt. Mater. 2007, 29, 672–678. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.; Cao, J. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 2020, 381, 120944. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Samiksha, S.; Gill, R. Carbon Monoxide Gas Sensor Based on Fe-ZnO Thin Film. Asian J. Chem. 2018, 30, 2737–2742. [Google Scholar] [CrossRef]
- Jayaraman, V.K.; Biswal, R.R.; Hernandez, A.G. Synthesis and characterization of chemically sprayed ZnO:Fe:Ni thin films: Effect of codoping concentration and response as gas sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 7423–7433. [Google Scholar] [CrossRef]
- Nuryadi, R.; Aprilia, L.; Hosoda, M.; Barique, M.A.; Udhiarto, A.; Hartanto, D.; Setiawan, M.B.; Neo, Y.; Mimura, H. Observation of CO Detection Using Aluminium-Doped ZnO Nanorods on Microcantilever. Sensors 2020, 20, 2013. [Google Scholar] [CrossRef] [Green Version]
- Aprilia, L.; Hosoda, M.; Nuryadi, R.; Neo, Y.; Barique, M.A.; Udhiarto, A.; Hartanto, D.; Mimura, H. Influence of water vapor on CO detection using a resonant microcantilever functionalized by Al-doped ZnO nanorods. Jpn. J. Appl. Phys. 2019, 58, SBBH09. [Google Scholar] [CrossRef]
- Jabbar, R.H.; Hilal, I.H.; Hammadi, F.Y. Synthesis of ZnO: Al thin films Deposited on Porous Silicon for CO Gas Sensing. J. Phys. Conf. Ser. 2020, 1660, 012040. [Google Scholar] [CrossRef]
- Lim, S.K.; Hong, S.H.; Hwang, S.; Choi, W.M.; Kim, S.; Park, H.; Jeong, M.G. Synthesis of Al-doped ZnO Nanorods via Microemulsion Method and Their Application as a CO Gas Sensor. J. Mater. Sci. Technol. 2015, 31, 639–644. [Google Scholar] [CrossRef]
- Al-Asedy, H.J.; Bi, N.; Al-khafaji, S.A.; Bakhtiar, H. Sol-gel grown aluminum/gallium co-doped ZnO nanostructures: Hydrogen gas sensing attributes. Mater. Sci. Semicond. Process. 2018, 77, 50–57. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Li, S.; Yang, P.; Xi, Y.; Cai, C.; Liu, W. Preparation of Al3+-doped ZnO micro–nanospheres for highly sensitive CO gas sensors. Appl. Phys. A 2021, 127, 1–7. [Google Scholar] [CrossRef]
- Hjiri, M.; Zahmouli, N.; Dhahri, R.; Leonardi, S.G.; Mir, L.E.; Neri, G. Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 2017, 28, 9667–9674. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Leonardi, S.G.; Neri, G. Excellent CO gas sensor based on Ga-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 6020–6024. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. CO sensing properties of Ga-doped ZnO prepared by sol–gel route. J. Alloys Compd. 2015, 634, 187–192. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; El Mir, L.; Alamri, H.; Bonavita, A.; Iannazzo, D.; Leonardi, S.G.; Neri, G. CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Dev. 2017, 2, 34–40. [Google Scholar] [CrossRef]
- Jabbar, R.H.; Hilal, I.H.; Shakir, W.A.; Abdulsattar, M.A. Characteristics of B doped ZnO thin films deposited on n and p-type porous silicon for NH3 and CO gas sensing. J. Adv. Pharm. Edu. Res. 2019, 9, 24–28. [Google Scholar]
- Ghosh, A.; Zhang, C.; Shi, S.; Zhang, H. High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sens. Actuators B Chem. 2019, 301. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhang, C.; Zhang, H.; Shi, S.Q. CO2 sensing behavior of calcium doped ZnO thin film: A study to address the cross-sensitivity of CO2 in H2 and CO environment. Langmuir 2019, 35, 10267–10275. [Google Scholar] [CrossRef]
- Ilager, D.; Shetti, N.P.; Malladi, R.S.; Shetty, N.S.; Reddy, K.R.; Aminabhavi, T.M. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J. Mol. Liq. 2020. [Google Scholar] [CrossRef]
- Water, W.; Yang, Y.-S. The influence of calcium doped ZnO films on Love wave sensor characteristics. Sens. Actuators A Phys. 2006, 127, 360–365. [Google Scholar] [CrossRef]
- Jaballah, S.; Benamara, M.; Dahman, H.; Lahem, D.; Debliquy, M.; El Mir, L. Formaldehyde sensing characteristics of calcium-doped zinc oxide nanoparticles-based gas sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 8230–8239. [Google Scholar] [CrossRef]
- Zeng, Y.; Lin, S.; Gu, D.; Li, X. Two-dimensional nanomaterials for gas sensing applications: The role of theoretical calculations. Nanomaterials 2018, 8, 851. [Google Scholar] [CrossRef] [Green Version]
- Piras, A.; Ehlert, C.; Grynáva, G. Sensing and sensitivity: Computational chemistry of graphene-based sensors. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, e1526. [Google Scholar] [CrossRef]
- Tang, X.; Du, A.; Kou, L. Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1361. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Montejo-Alvaro, F.; Peña-Castañeda, Y.A.; Matadamas-Ortiz, P.T.; Medina, D.I. Recent Developments in Graphene-Based Toxic Gas Sensors: A Theoretical Overview. Sensors 2021, 21, 1992. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, N.L.; Ahmadi Peyghan, A.; Soleymanabadi, H. Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 2015, 119, 6398–6404. [Google Scholar] [CrossRef]
- Maarouf, M.; Al-Sunaidi, A. Investigating the chemisorption of CO and CO2 on Al-and Cu-doped ZnO nanowires by density-functional calculations. Comput. Theor. Chem. 2020, 1175, 112728. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Phung, T.K.; Vo, D.V.N.; Le, T.H.; Khieu, D.Q.; Pham, T.L.M. Unraveling the effect of Al doping on CO adsorption at ZnO (101 [combining macron] 0). RSC Adv. 2020, 10, 40663–40672. [Google Scholar] [CrossRef]
- Omidvar, A. Indium-doped and positively charged ZnO nanoclusters: Versatile materials for CO detection. Vacuum 2018, 147, 126–133. [Google Scholar] [CrossRef]
- Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Lamoen, D. First-principles study of CO and OH adsorption on In-doped ZnO surfaces. J. Phys. Chem. Solids 2019, 132, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, M.; Bovgyra, O.; Dzikovskyi, V.; Bovhyra, R. A DFT study for adsorption of CO and H2 on Pt-doped ZnO nanocluster. SN Appl. Sci. 2020, 2, 790. [Google Scholar] [CrossRef] [Green Version]
- Aslnzadeh, S. Transition metal doped ZnO nanoclusters for carbon monoxide detection: DFT studies. J. Mol. Model. 2016, 22, 160. [Google Scholar] [CrossRef]
- Derakhshandeh, M.; Anaraki-Ardakani, H. A computational study on the experimentally observed sensitivity of Ga-doped ZnO nanocluster toward CO gas. Phys. E Low Dimens. Syst. Nanostruct. 2016, 84, 298–302. [Google Scholar] [CrossRef]
- Jigang, W.; Ji, L.; Yong, D.; Yan, Z.; Lihui, M.; Asadi, H. Effect of platinum on the sensing performance of ZnO nanocluster to CO gas. Solid State Commun. 2020, 316, 113954. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.T.; Ortiz-Herrera, J.C.; López-Chávez, E.; Solorza-Feria, O.; Medina, D.I. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Mater. Today Phys. 2021, 19, 100406. [Google Scholar] [CrossRef]
- Chikate, P.R.; Sharma, A.; Rondiya, S.R.; Cross, R.W.; Dzade, N.Y.; Shirage, P.M.; Devan, R.S. Hierarchically interconnected ZnO nanowires for low-temperature-operated reducing gas sensors: Experimental and DFT studies. New J. Chem. 2021, 3, 1404–1414. [Google Scholar] [CrossRef]
- Xiao, G.; Chen, W.; Peng, S.; Yu, C.; Jiang, Z. Competitive adsorption of gases dissolved in transformer oil on Co-doped ZnO (0 0 0 1) surface. Comput. Mater. Sci. 2018, 142, 72–81. [Google Scholar] [CrossRef]
- Habib, I.Y.; Tajuddin, A.A.; Noor, H.A.; Lim, C.M.; Mahadi, A.H.; Kumara, N.T.R.N. Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. Sci. Rep. 2019, 9, 9207. [Google Scholar] [CrossRef] [Green Version]
Parameters | Description |
---|---|
Response | It is defined as a change in some physical properties when the device is exposed to target species. |
Selectivity | It is the ability of a gas sensor to detect high sensitivity to a specific gas among various types of gases at the same concentration level. |
Sensitivity | It is referred in the graph where slope represents the correlation between gas response and the partial pressure of target gas. |
Limit of detection | It is the lowest and highest concentration of the target gas that the sensor can detect. |
Limit of detection | It is the highest gas concentration that the sensor can detect. |
Operating temperature | It refers to the maximum temperature at which the device exhibits its maximum sensitivity in the presence of a target gas. |
Repeatability | It is the response cycles of a sensor to be exposed to an analyte gas flow for a long time. |
Response time | It is usually defined as the time it takes for gas sensor to respond to a concentration change. |
Stability | It is the ability of gas sensors to conserve the output response measurement by a period, the level concentration of gas (ppm) unchanged. |
Recovery time | Time measured when the gas sensor response changes in the interval of 90% to 10% when the sensor is exposed to a full-scale concentration of the gas, implying that the sensor exhibits 90% of the saturation value of resistance in seconds. |
Material | Eads (in eV) | Functional | Approach | Ref. |
---|---|---|---|---|
Al | −1.24 a, −0.71 b | B3LYP | Cluster (24 atoms) | [89] |
Al | −0.79 | PBE | Triangular nanowire (132 atoms) | [90] |
Al | −1.12 | PBE | Slab | [91] |
In | −0.96 a, −0.48 b | B3LYP | Cluster (24 atoms) | [92] |
In | −1.30 | PBE | Slab | [93] |
Pt | − 3.54 | PBE | Cluster (24 atoms) | [94] |
Sc | −0.86 | B3LYP | Cluster (24 atoms) | [95] |
Ti | −1.44 | B3LYP | Cluster (24 atoms) | [95] |
V | −1.67 | B3LYP | Cluster (24 atoms) | [95] |
Cr | −2.80 | B3LYP | Cluster (24 atoms) | [95] |
Mn | −1.45 | B3LYP | Cluster (24 atoms) | [95] |
Fe | −1.79 | B3LYP | Cluster (24 atoms) | [95] |
Cu | −1.01 | PBE | Triangular nanowire (132 atoms) | [90] |
Ga | −0.61 c | B3LYP | Cluster (24 atoms) | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors 2021, 21, 4425. https://doi.org/10.3390/s21134425
Pineda-Reyes AM, Herrera-Rivera MR, Rojas-Chávez H, Cruz-Martínez H, Medina DI. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors. 2021; 21(13):4425. https://doi.org/10.3390/s21134425
Chicago/Turabian StylePineda-Reyes, Ana María, María R. Herrera-Rivera, Hugo Rojas-Chávez, Heriberto Cruz-Martínez, and Dora I. Medina. 2021. "Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping" Sensors 21, no. 13: 4425. https://doi.org/10.3390/s21134425
APA StylePineda-Reyes, A. M., Herrera-Rivera, M. R., Rojas-Chávez, H., Cruz-Martínez, H., & Medina, D. I. (2021). Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors, 21(13), 4425. https://doi.org/10.3390/s21134425