Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs
<p>Overall workflow of the proposed learning framework for classifying the short ECGs of variable length. (<b>a</b>) CS-ECM generation; (<b>b</b>) feature learning; (<b>c</b>) classification.</p> "> Figure 2
<p>CS-ECM generation of short variable-length ECG signals. (<b>a</b>) Raw ECG signal and corresponding short segments (gray bars); (<b>b</b>) original ECM generated by vertically aligning short segments based on the first R-peaks; and (<b>c</b>) CS-ECM obtained by applying size adaptation on the original ECM.</p> "> Figure 3
<p>Examples of CS-ECMs with a fixed size (180, 240). Panels (<b>a</b>–<b>d</b>) correspond to the classes of normal, AF, other abnormal rhythms, and too noisy, respectively. The magnitude (voltage) of ECG signal is indicated by the color bar, denoting low and high values with the blue and red colors, respectively.</p> "> Figure 4
<p>The proposed BIT-CNN model: (<b>a</b>) architecture and (<b>b</b>) primary functional modules.</p> "> Figure 5
<p>Pooling operations different in low- (<b>top</b>) and high-level blocks (<b>bottom</b>).</p> "> Figure 6
<p>Illustrating the effect of a series of the max pooling operations in the low-level blocks.</p> "> Figure 7
<p>Detailed description of the proposed BIT-CNN configuration. The output shape of each operation is expressed in the form of (height, width, channel) or (length of vector). For simplicity, some layers without size changes are not shown here.</p> "> Figure 8
<p><span class="html-italic">t</span>-SNE visualization regarding the class-distinguishability of the learned feature vectors in blocks (1–6). For convenience, the samples belonging to each class are indicated as points with colors.</p> "> Figure 9
<p><span class="html-italic">t</span>-SNE visualization regarding the class-distinguishability of the learned representation vectors through block (1–6) (<b>a</b>) without channel attention and (<b>b</b>) with channel attention.</p> "> Figure 10
<p>The difference in the attended regions of blocks 1 to 6 among (<b>a</b>) normal, (<b>b</b>) AF, and (<b>c</b>) other classes.</p> "> Figure 11
<p>Comparison of filter-specific attention regions in blocks 4 to 6 for the normal class.</p> "> Figure 12
<p>Comparison of filter-specific attention regions in blocks 4 to 6 for the AF class.</p> "> Figure 13
<p>Comparison of filter-specific attention regions in blocks 4 to 6 for the other class.</p> ">
Abstract
:1. Introduction
- We use a fixed-size 2D representation, called consistent-sized ECM (CS-ECM) built from a short single-lead 1D ECG signal of variable length. The CS-ECM was designed to handle the ECGs of a variable short-length (30 s to 1 min) by modifying the original ECM [41] via size adaptation. This allows the shape and the rhythm of heartbeats over time to be jointly expressed as a 2D image of consistent size and fed into the input for BIT-CNN-based learning.
- We propose a novel BIT-CNN architecture characterized as (1) consisting of three types of convolution filters with different shapes to learn the significant characteristics shown within each beat and between multiple beats; (2) utilizing 1 × 1 convolution filters to effectively summarize the channel dimension of feature maps and reduce the number of parameters to be learned; (3) applying dual (max/average) pooling operations to reduce the spatial channel dimension of feature maps; and (4) employing a spatial and channel attention mechanism to enhance the expressive power of representation vectors by selectively focusing on the salient parts.
- With the proposed methodology, we develop an arrhythmia classification model to classify short single-lead ECG recordings into four different rhythms, namely normal, AF, other arrhythmias, and too noisy. In addition, for an in-depth understanding of the trained model, we visually inspect the class-specific and layer-specific filter activations of the input ECG signals.
2. Methodology
2.1. Overview
2.2. Consistent-Sized ECM for Handling Variable-Length ECGs
2.3. The Proposed BIT-CNN Model
2.3.1. Model Architecture
Multi-Shape Convolution Filters
1 × 1 Convolution for Channel (Depth) Dimension Reduction
Dual Pooling for Spatial Dimension Reduction
Spatial Attention in the HB Layer
Channel Attention Score Learning
2.3.2. Model Training
3. Experimental Results and Discussion
3.1. Dataset
3.2. Evaluation Method
3.3. Performance Evaluation and Comparison
3.4. Interpretability of the Learned Features
3.4.1. Characteristics of the Learned Feature Space in Different Layers
3.4.2. Layer-Specific Attention Regions for Class Distinction
3.4.3. Filter-Specific Attention Regions for Class Distinction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendis, S.; Puska, P.; Norrving, B. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization: Geneva, Switzerland, 2011; pp. 3–18. [Google Scholar]
- Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; Hindricks, G.; Prendergast, B.; et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Fauchier, L.; Freedman, S.B.; Gelder, I.V.; Natale, A.; Gianni, C.; Nattel, S.; Potpara, T.; Rienstra, M.; Tse, H.; et al. Atrial fibrillation. Nat. Rev. Dis. Primers 2016, 2, 16017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.H.C.; White, F.A.; Tipoe, T.; Liu, T.; Wong, M.C.; Jesuthasan, A.; Baranchuk, A.; Tse, G.; Yan, B.P.; Borges, L.; et al. The current state of mobile phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: Narrative review. JMIR Mhealth Uhealth 2019, 7, e11606. [Google Scholar] [CrossRef] [PubMed]
- Marsili, I.A.; Biasiolli, L.; Masè, M.; Adami, A.; Andrighetti, A.O.; Ravelli, F.; Nollo, G. Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device. Comput. Biol. Med. 2020, 116, 103540. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Zhu, Y. Early detection of atrial fibrillation based on ECG signals. Bioengineering 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci. Data 2020, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Ladavich, S.; Ghoraani, B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed. Signal Process. Control 2015, 18, 274–281. [Google Scholar] [CrossRef]
- Huo, Y.; Holmqvist, F.; Carlson, J.; Gaspar, T.; Hindricks, G.; Piorkowski, C.; Bollmann, A.; Platonov, P.G. Variability of P-wave morphology predicts the outcome of circumferential pulmonary vein isolation in patients with recurrent atrial fibrillation. J. Electrocardiol. 2015, 48, 218–225. [Google Scholar] [CrossRef]
- Filos, D.; Chouvarda, I.; Tachmatzidis, D.; Vassilikos, V.; Maglaveras, N. Beat-to-beat P-wave morphology as a predictor of paroxysmal atrial fibrillation. Comput. Methods Programs Biomed. 2017, 151, 111–121. [Google Scholar] [CrossRef]
- Andersen, R.S.; Poulsen, E.S.; Puthusserypady, S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 2039–2042. [Google Scholar] [CrossRef]
- Faust, O.; Shenfield, A.; Kareem, M.; San, T.R.; Fujita, H.; Acharya, U.R. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Biol. Med. 2018, 102, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Ivanovic, M.D.; Atanasoski, V.; Shvilkin, A.; Hadzievski, L.; Maluckov, A. Deep learning Approach for Highly Specific Atrial Fibrillation and Flutter Detection based on RR Intervals. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1780–1783. [Google Scholar] [CrossRef]
- Kropf, M.; Hayn, D.; Schreier, G. ECG classification based on time and frequency domain features using random forests. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Lai, D.; Zhang, X.; Zhang, Y.; Heyat, M.B.B. Convolutional neural network based detection of atrial fibrillation combing RR intervals and F-wave frequency spectrum. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4897–4900. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Y.; Wu, M.; Shang, J.; Wang, Q.; Li, H.; Xie, J. Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiol. Meas. 2019, 40, 054009. [Google Scholar] [CrossRef]
- Li, H.; Yuan, D.; Wang, Y.; Cui, D.; Cao, L. Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system. Sensors 2016, 16, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athif, M.; Yasawardene, P.C.; Daluwatte, C. Detecting atrial fibrillation from short single lead ECGs using statistical and morphological features. Physiol. Meas. 2018, 39, 064002. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Pachori, R.B.; Acharya, U.R. Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern. Biomed. Eng. 2018, 38, 564–573. [Google Scholar] [CrossRef]
- Rizwan, M.; Whitaker, B.M.; Anderson, D.V. AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning. Physiol. Meas. 2018, 39, 124007. [Google Scholar] [CrossRef]
- Acharya, U.R.; Faust, O.; Ciaccio, E.J.; Koh, J.E.W.; Oh, S.L.; Tan, R.S.; Garan, H. Application of nonlinear methods to discriminate fractionated electrograms in paroxysmal versus persistent atrial fibrillation. Comput. Methods Programs Biomed. 2019, 175, 163–178. [Google Scholar] [CrossRef]
- Sahoo, S.; Dash, M.; Behera, S.; Sabut, S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. IRBM 2020, 41, 185–194. [Google Scholar] [CrossRef]
- Czabanski, R.; Horoba, K.; Wrobel, J.; Matonia, A.; Martinek, R.; Kupka, T.; Jezewski, M.; Kahankova, R.; Jezewski, J.; Leski, J.M. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors 2020, 20, 765. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, A.; Zoha, A.; Mabrouk, I.; Sabbour, H.; Al-Sumaiti, A.; Alomaniy, A.; Imran, M.A.; Abbasi, Q.H. A review on the state of the art in atrial fibrillation detection enabled by machine learning. IEEE Rev. Biomed. Eng. 2020, 14, 219–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Sim, G.; Matuszewski, B. Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybern. Biomed. Eng. 2019, 39, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Porumb, M.; Iadanza, E.; Massaro, S.; Pecchia, L. A convolutional neural network approach to detect congestive heart failure. Biomed. Signal Process. Control 2020, 55, 101597. [Google Scholar] [CrossRef]
- Murat, F.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Demir, Y.; Acharya, U.R. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol. Med. 2020, 120, 103726. [Google Scholar] [CrossRef]
- Yildirim, O.; Baloglu, U.B.; Tan, R.S.; Ciaccio, E.J.; Acharya, U.R. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Methods Programs Biomed. 2019, 176, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, H.; Lu, P.; Wang, Z. An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. J. Healthc. Eng. 2019, 2019, 6320651. [Google Scholar] [CrossRef] [Green Version]
- Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J. Biomed. Health Inform. 2020, 24, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 2018, 93, 84–92. [Google Scholar] [CrossRef]
- He, R.; Wang, K.; Zhao, N.; Liu, Y.; Yuan, Y.; Li, Q.; Zhang, H. Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks. Front. Physiol. 2018, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Kamaleswaran, R.; Mahajan, R.; Akbilgic, O. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length. Physiol. Meas. 2018, 39, 035006. [Google Scholar] [CrossRef]
- Fujita, H.; Cimr, D. Computer aided detection for fibrillations and flutters using deep convolutional neural network. Inf. Sci. 2019, 486, 231–239. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Haverkamp, H.T.; Fosse, S.O.; Schuster, P. Accuracy and usability of single-lead ECG from smartphones—A clinical study. Indian Pacing Electrophysiol. J. 2019, 19, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, Á.H.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Quesada, A.; Rieta, J.J.; Alcaraz, R. A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy 2020, 22, 733. [Google Scholar] [CrossRef]
- Chen, T.M.; Huang, C.H.; Shih, E.S.; Hu, Y.F.; Hwang, M.J. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model. Iscience 2020, 23, 100886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Tian, F.; Rengifo, S.; Xu, G.; Wang, M.M.; Borjigin, J. Electrocardiomatrix: A new method for beat-by-beat visualization and inspection of cardiac signals. J. Integr. Cardiol. 2015, 1, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.; Xu, G.; Liu, V.; Farrehi, P.; Borjigin, J. Accurate detection of atrial fibrillation and atrial flutter using the electrocardiomatrix technique. J. Electrocardiol. 2018, 51, S121–S125. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.L.; Xu, G.; Belinky Krzyske, A.M.; Buhay, N.C.; Blaha, M.; Wang, M.M.; Farrehi, P.; Borjigin, J. Electrocardiomatrix facilitates accurate detection of atrial fibrillation in stroke patients. Stroke 2019, 50, 1676–1681. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- LSTM attention Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef] [Green Version]
- Clifford, G.D.; Liu, C.; Moody, B.; Li-wei, H.L.; Silva, I.; Li, Q.; Johnson, A.E.; Mark, R.G. AF Classification from a short single lead ECG recording: The PhysioNet/Computing in Cardiology Challenge 2017. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; Volume 44, pp. 1–13. [Google Scholar] [CrossRef]
- Zabihi, M.; Rad, A.B.; Katsaggelos, A.K.; Kiranyaz, S.; Narkilahti, S.; Gabbouj, M. Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; Volume 44, pp. 1–4. [Google Scholar] [CrossRef]
- Mukherjee, A.; Choudhury, A.D.; Datta, S.; Puri, C.; Banerjee, R.; Singh, R.; Ukil, A.; Bandyopadhyay, S.; Pal, A.; Khandelwal, S. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture. Physiol. Meas. 2019, 40, 054006. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Li, Y.S.; Hwang, B.J.; Hsiao, C.H. Detection of atrial fibrillation using 1D convolutional neural network. Sensors 2020, 20, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Qian, B.; Wei, J.; Zhang, X.; Chen, S.; Zheng, Q. Domain knowledge guided deep atrial fibrillation classification and its visual interpretation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM), Beijing, China, 3–7 November 2019; pp. 129–138. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.; Parvaneh, S.; Rahman, A.; Conroy, B.; Babaeizadeh, S. Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017. [Google Scholar] [CrossRef]
- Xiong, Z.; Nash, M.P.; Cheng, E.; Fedorov, V.V.; Stiles, M.K.; Zhao, J. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol. Meas. 2018, 39, 094006. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, F.; Carr, O.; Pimentel, M.A.; Mahdi, A.; De Vos, M. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017. [Google Scholar] [CrossRef]
- Zihlmann, M.; Perekrestenko, D.; Tschannen, M. Convolutional recurrent neural networks for electrocardiogram classification. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; Volume 44, pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, Z.; Särkkä, S.; Rad, A.B. Kalman-based spectro-temporal ECG analysis using deep convolutional networks for atrial fibrillation detection. J. Signal Process. Syst. 2020, 92, 621–636. [Google Scholar] [CrossRef]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. In Proceedings of the 4th Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 9–10 August 2019; Volume 106, pp. 359–380. [Google Scholar]
- Lauritsen, S.M.; Kristensen, M.; Olsen, M.V.; Larsen, M.S.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 2020, 11, 3852. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26–30 June 2016; pp. 2921–2929. [Google Scholar] [CrossRef] [Green Version]
Type | No. of Recordings | In % | Time Length (s) | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Max | Median | Min | |||
Normal (N) | 5076 | 59.52 | 32.11 | 9.97 | 60.95 | 30 | 9.05 |
AF (A) | 758 | 8.89 | 32.34 | 12.32 | 60.21 | 30 | 9.99 |
Other (O) | 2415 | 28.32 | 34.3 | 11.76 | 60.86 | 30 | 9.13 |
Noisy (P) | 279 | 3.27 | 24.38 | 10.41 | 60 | 30 | 9.36 |
Total | 8528 | 100 | 32.5 | 10.89 | 60.95 | 30 | 9.05 |
Actual | Predicted | Sens. (Recall) | PPV (Precision) | F1-Score | |||
---|---|---|---|---|---|---|---|
Normal | AF | Other | Noisy | ||||
Normal | 4611 | 23 | 354 | 88 | 90.84 | 88.66 | 89.73 |
AF | 29 | 610 | 97 | 22 | 80.47 | 81.66 | 81.06 |
Other | 524 | 103 | 1712 | 76 | 70.89 | 78.39 | 74.45 |
Noisy | 37 | 11 | 21 | 210 | 75.27 | 53.03 | 62.22 |
Methods | Input Length | Network | Validation | F1N | F1A | F1O | F1P | F1_NAO | F_NAOP | Visual Interpretation |
---|---|---|---|---|---|---|---|---|---|---|
[56] | 30 s | ResNet (34 layers) | 5-fold CV | 90.2 | 65.7 | 69.8 | 64.0 | 75.2 | 72.4 | None |
[57] | N/A | 2D CNN with LSTM layer | 5-fold CV | 88.8 | 76.4 | 72.6 | 64.5 | 79.2 | 75.58 | None |
[54] | 9, 15 s | DenseNet | 5-fold CV | 91 | 80 | 76 | N/A | 82 | N/A | None |
[55] | 9–61 s | 16-layer 1D residual CRNN | 5-fold CV | 91.9 | 85.8 | 81.6 | N/A | 86.4 | N/A | None |
[52] | 30 s | 1D CNN | 5-fold CV | N/A | N/A | N/A | N/A | 82.2 | 78.2 | None |
[53] | 60.5 s | Modified ResNet | 8:1:1 split | N/A | N/A | N/A | N/A | 79.59 | N/A | Included |
[58] | 9–61 s | Dense18+ for spectrogram | 10-fold CV | 89.29 | 79.18 | 72.25 | 52.50 | 80.24 | 73.31 | Included |
Proposed | 9–61 s | Proposed BIT-CNN | 5-fold CV | 89.73 | 81.06 | 74.45 | 62.22 | 81.75 | 76.87 | Included |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Shin, M. Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs. Sensors 2021, 21, 4331. https://doi.org/10.3390/s21134331
Lee H, Shin M. Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs. Sensors. 2021; 21(13):4331. https://doi.org/10.3390/s21134331
Chicago/Turabian StyleLee, Hyeonjeong, and Miyoung Shin. 2021. "Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs" Sensors 21, no. 13: 4331. https://doi.org/10.3390/s21134331
APA StyleLee, H., & Shin, M. (2021). Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs. Sensors, 21(13), 4331. https://doi.org/10.3390/s21134331