Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller
<p>Interior structure of the AUV.</p> "> Figure 2
<p>The system architecture of the AUV.</p> "> Figure 3
<p>Flow chart of the image-processing module.</p> "> Figure 4
<p>The procedure of image processing: (<b>a</b>) capturing the video from the AUV front camera; (<b>b</b>) conversion from the RGB color space to the HSV color space; (<b>c</b>) histogram equalization, binarization, and filter; (<b>d</b>) filter and morphology of dilation and erosion; and (<b>e</b>) obtaining the color features of the object.</p> "> Figure 5
<p>The ROI selections for (<b>a</b>) case A, (<b>b</b>) case B, (<b>c</b>) case C, (<b>d</b>) case D, (<b>e</b>) case E, (<b>f</b>) case F, (<b>g</b>) case G, and (<b>h</b>) case H, respectively.</p> "> Figure 6
<p>Definitions of the tracking control parameters values: (<b>a</b>) the benchmark, (<b>b</b>) the orientations, and (<b>c</b>) the distance.</p> "> Figure 7
<p>Relationship between the earth-fixed, body-fixed, and vehicle image coordinate systems.</p> "> Figure 8
<p>Relationship between the target’s image horizontal coordinate axis and the FLC yaw angle.</p> "> Figure 9
<p>Relationship between the target’s image vertical coordinate axis and the FLC pitch angle.</p> "> Figure 10
<p>Relationship between the target’s size within the image coordinates and the FLC propeller revolution speed.</p> "> Figure 11
<p>The recognition results of the image with the EKF.</p> "> Figure 12
<p>The exterior and the dimension of (<b>a</b>) the stability water tank, and (<b>b</b>) the towing tank.</p> "> Figure 13
<p>Schematic of the AUV and target object in the dynamic experiment.</p> "> Figure 14
<p>Environment of the dynamic experiment.</p> "> Figure 15
<p>The flow chart of the image-based navigation system in the AUV.</p> "> Figure 16
<p>Dynamic guidance experiment with a towing speed of 0.2 m/s. (<b>a</b>) Displacement trajectory on the image coordinates, (<b>b</b>) time series of the image coordinate Y−axis and AUV yaw angle, (<b>c</b>) time series of image coordinate Y−axis and AUV vertical rudder, (<b>d</b>) time series of the image coordinate Z−axis and the AUV vertical rudder, and (<b>e</b>) time series of the image coordinate surface area and the AUV propeller revolution speed.</p> "> Figure 17
<p>Dynamic guidance experiment with a towing speed of 0.4 m/s. (<b>a</b>) Displacement trajectory on the image coordinates, (<b>b</b>) time series of the image coordinate Y−axis and AUV yaw angle, (<b>c</b>) time series of image coordinate Y−axis and AUV vertical rudder, (<b>d</b>) time series of the image coordinate Z−axis and the AUV vertical rudder, and (<b>e</b>) time series of the image coordinate surface area and the AUV propeller revolution speed.</p> "> Figure 18
<p>Dynamic guidance experiment with a towing speed of 0.6 m/s. (<b>a</b>) Displacement trajectory on the image coordinates, (<b>b</b>) time series of the image coordinate Y−axis and AUV yaw angle, (<b>c</b>) time series of image coordinate Y−axis and AUV vertical rudder, (<b>d</b>) time series of the image coordinate Z−axis and the AUV vertical rudder, and (<b>e</b>) time series of the image coordinate surface area and the AUV propeller revolution speed.</p> "> Figure 19
<p>Dynamic guidance experiment with a towing speed of 0.8 m/s. (<b>a</b>) Displacement trajectory on the image coordinates, (<b>b</b>) time series of the image coordinate Y−axis and AUV yaw angle, (<b>c</b>) time series of image coordinate Y−axis and AUV vertical rudder, (<b>d</b>) time series of the image coordinate Z−axis and the AUV vertical rudder, and (<b>e</b>) time series of the image coordinate surface area and the AUV propeller revolution speed.</p> "> Figure 20
<p>Image coordinate system logs of the AUV in dynamic guidance experiments with towing speeds of 0.2, 0.4, 0.6, and 0.8 m/s.</p> "> Figure 21
<p>Statistical results of the dynamic guidance experiments in different towing speeds: the mean values and standard deviations of (<b>a</b>) <math display="inline"><semantics> <mrow> <mfenced close="|" open="|"> <mrow> <msub> <mi>V</mi> <mi>y</mi> </msub> <mo>−</mo> <msub> <mi>V</mi> <mrow> <mi>y</mi> <mo>,</mo> <mo> </mo> <mi>c</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mfenced close="|" open="|"> <mrow> <msub> <mi>V</mi> <mi>z</mi> </msub> <mo>−</mo> <msub> <mi>V</mi> <mrow> <mi>z</mi> <mo>,</mo> <mo> </mo> <mi>c</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. AUV Design and Structure
2.1. System Structure of the AUV
2.2. Image-Processing Module
2.3. Motion Control Module
3. Recognition of Image Features
4. Image-Based Navigation System
4.1. Relationships between Different Coordinate Systems
4.2. Fuzzy Logic Control (FLC)
4.3. Servomotor Controller Design
4.4. Propeller Controller Design
4.5. Extended Kalman Filter (EKF)
5. Experimental Results and Discussion
5.1. Experimental Environment and Equipment
5.2. Experimental Procedure
5.3. Experimental Results and Data Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Widditsch, H. SPURV-The First Decade; Applied Physics Laboratory, University of Washington: Seattle, WA, USA, 1973. [Google Scholar]
- Allen, B.; Stokey, R.; Austin, T.; Forrester, N.; Goldsborough, R.; Purcell, M.; von Alt, C. REMUS: A small, low cost AUV; system description, field trials and performance results. In Proceedings of the Oceans’ 97 MTS/IEEE Conference, Halifax, NS, Canada, 6–9 October 1997; pp. 994–1000. [Google Scholar]
- Foresti, G.L. Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2001, 31, 691–705. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, H.; Huang, H.; Zhou, H.; Wan, Z.; Wang, Z.; Xu, Y. Autonomous Underwater Pipeline Tracking Control Based on Visual Images. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018. [Google Scholar]
- Hallset, J.O. Simple vision tracking of pipelines for an autonomous underwater vehicle. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 2767–2772. [Google Scholar]
- Balasuriya, A.; Ura, T. Vision-based underwater cable detection and following using AUVs. In Proceedings of the OCEANS’02 MTS/IEEE, Biloxi, MI, USA, 29–31 October 2002; pp. 1582–1587. [Google Scholar]
- Inzartsev, A.V.; Pavin, A.M. AUV cable tracking system based on electromagnetic and video data. In Proceedings of the OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008; pp. 1–6. [Google Scholar]
- Li, D.-j.; Chen, Y.-h.; Shi, J.-g.; Yang, C.-j. Autonomous underwater vehicle docking system for cabled ocean observatory network. Ocean Eng. 2015, 109, 127–134. [Google Scholar] [CrossRef]
- Khan, A.; Ali, S.S.A.; Meriaudeau, F.; Malik, A.S.; Soon, L.S.; Seng, T.N. Visual feedback–based heading control of autonomous underwater vehicle for pipeline corrosion inspection. Int. J. Adv. Robot. Syst. 2017, 14, 1729881416658171. [Google Scholar] [CrossRef] [Green Version]
- Allibert, G.; Hua, M.-D.; Krupínski, S.; Hamel, T. Pipeline following by visual servoing for Autonomous Underwater Vehicles. Control Eng. Pract. 2019, 82, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Raaj, Y.; John, A.; Jin, T. 3D Object Localization using Forward Looking Sonar (FLS) and Optical Camera via particle filter based calibration and fusion. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–10. [Google Scholar]
- Nikolovska, A. AUV based flushed and buried object detection. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–5. [Google Scholar]
- Sáez, J.M.; Escolano, F. Entropy minimization SLAM using stereo vision. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 36–43. [Google Scholar]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2013, 39, 131–149. [Google Scholar] [CrossRef]
- Jung, J.; Lee, Y.; Kim, D.; Lee, D.; Myung, H.; Choi, H.-T. AUV SLAM using forward/downward looking cameras and artificial landmarks. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan, Korea, 21–24 February 2017; pp. 1–3. [Google Scholar]
- Palomeras, N.; Carreras, M.; Andrade-Cetto, J. Active SLAM for autonomous underwater exploration. Remote Sens. 2019, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Li, A.Q.; Rekleitis, I. Svin2: An underwater slam system using sonar, visual, inertial, and depth sensor. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1861–1868. [Google Scholar]
- Gaya, J.O.; Gonçalves, L.T.; Duarte, A.C.; Zanchetta, B.; Drews, P.; Botelho, S.S. Vision-based obstacle avoidance using deep learning. In Proceedings of the 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), Recife, Brazil, 8–12 October 2016; pp. 7–12. [Google Scholar]
- Yan, Z.; Li, J.; Zhang, G.; Wu, Y. A real-time reaction obstacle avoidance algorithm for autonomous underwater vehicles in unknown environments. Sensors 2018, 18, 438. [Google Scholar] [CrossRef] [Green Version]
- Packard, G.E.; Kukulya, A.; Austin, T.; Dennett, M.; Littlefield, R.; Packard, G.; Purcell, M.; Stokey, R.; Skomal, G. Continuous autonomous tracking and imaging of white sharks and basking sharks using a REMUS-100 AUV. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–5. [Google Scholar]
- Park, J.-Y.; Jun, B.-h.; Lee, P.-m.; Oh, J. Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Eng. 2009, 36, 48–61. [Google Scholar] [CrossRef]
- Teo, K.; An, E.; Beaujean, P.-P.J. A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 2012, 37, 143–155. [Google Scholar] [CrossRef]
- Stokey, R.; Purcell, M.; Forrester, N.; Austin, T.; Goldsborough, R.; Allen, B.; von Alt, C. A docking system for REMUS, an autonomous underwater vehicle. In Proceedings of the Oceans’97. MTS/IEEE Conference, Halifax, NS, Canada, 6–9 October 1997; pp. 1132–1136. [Google Scholar]
- Jung, J.; Choi, J.; Lee, Y.; Choi, H.-T. AUV localization using depth perception of underwater structures from a monocular camera. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–4. [Google Scholar]
- Lin, R.; Zhang, F.; Li, D.; Lin, M.; Zhou, G.; Yang, C. An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking. Sensors 2021, 21, 2468. [Google Scholar] [CrossRef]
- Yan, Z.; Gong, P.; Zhang, W.; Li, Z.; Teng, Y. Autonomous underwater vehicle vision guided docking experiments based on L-shaped light array. IEEE Access 2019, 7, 72567–72576. [Google Scholar] [CrossRef]
- Myint, M.; Yonemori, K.; Lwin, K.N.; Yanou, A.; Minami, M. Dual-eyes vision-based docking system for autonomous underwater vehicle: An approach and experiments. J. Intell. Robot. Syst. 2018, 92, 159–186. [Google Scholar] [CrossRef]
- Balasuriya, A.; Ura, T. Autonomous target tracking by underwater robots based on vision. In Proceedings of the 1998 International Symposium on Underwater Technology, Tokyo, Japan, 17–17 April 1998; pp. 191–197. [Google Scholar]
- Ruiz, I.T.; Petillot, Y.; Lane, D.; Bell, J. Tracking Objects in Underwater Multibeam Sonar Images. Available online: http://home.eps.hw.ac.uk/~ceeyrp/WWW/Research/Petillot99.pdf (accessed on 27 May 2021).
- Fan, Y.; Balasuriya, A. Optical flow based speed estimation in AUV target tracking. In Proceedings of the MTS/IEEE Oceans 2001 An Ocean Odyssey (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; pp. 2377–2382. [Google Scholar]
- Hildebrandt, M.; Kirchner, F. Imu-aided stereo visual odometry for ground-tracking auv applications. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, NSW, Australia, 24–27 May 2010; pp. 1–8. [Google Scholar]
- Kim, D.; Lee, D.; Myung, H.; Choi, H.-T. Object detection and tracking for autonomous underwater robots using weighted template matching. In Proceedings of the 2012 Oceans-Yeosu, Yeosu, Korea, 21–24 May 2012; pp. 1–5. [Google Scholar]
- Myint, M.; Yonemori, K.; Yanou, A.; Lwin, K.N.; Minami, M.; Ishiyama, S. Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking. J. Robot. Mechatron. 2016, 28, 543–558. [Google Scholar] [CrossRef]
- Kumar, G.S.; Painumgal, U.V.; Kumar, M.C.; Rajesh, K. Autonomous underwater vehicle for vision based tracking. Procedia Comput. Sci. 2018, 133, 169–180. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, H. Object tracking using color correlogram. In Proceedings of the 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, China, 15–16 October 2005; pp. 263–270. [Google Scholar]
- Asif, M.; Arshad, M.R. An Active Contour and Kalman Filter for Underwater Target Tracking and Navigation; INTECH Open Access Publisher Online: London, UK, 2006. [Google Scholar]
- Hagen, P.E.; Størkersen, N.; Marthinsen, B.-E.; Sten, G.; Vestgård, K. Rapid environmental assessment with autonomous underwater vehicles—Examples from HUGIN operations. J. Marine Syst. 2008, 69, 137–145. [Google Scholar] [CrossRef]
- Miller, P.A.; Farrell, J.A.; Zhao, Y.; Djapic, V. Autonomous underwater vehicle navigation. IEEE J. Ocean. Eng. 2010, 35, 663–678. [Google Scholar] [CrossRef]
- Leonard, J.J.; Bahr, A. Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering; Springer: Cham, Switzerland, 2016; pp. 341–358. [Google Scholar]
- Sahu, B.K.; Subudhi, B. Adaptive tracking control of an autonomous underwater vehicle. Int. J. Autom. Comput. 2014, 11, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Pfingsthorn, M.; Rathnam, R.; Luczynski, T.; Birk, A. Full 3D navigation correction using low frequency visual tracking with a stereo camera. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–6. [Google Scholar]
- Pérez-Alcocer, R.; Torres-Méndez, L.A.; Olguín-Díaz, E.; Maldonado-Ramírez, A.A. Vision-based autonomous underwater vehicle navigation in poor visibility conditions using a model-free robust control. J. Sensors 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Papanikolopoulos, N.P.; Khosla, P.K. Adaptive robotic visual tracking: Theory and experiments. IEEE Transactions on Automatic Control 1993, 38, 429–445. [Google Scholar] [CrossRef]
- Bazeille, S.; Quidu, I.; Jaulin, L. Color-based underwater object recognition using water light attenuation. Intell. Serv. Robot. 2012, 5, 109–118. [Google Scholar] [CrossRef]
- Yu, S.-C.; Ura, T.; Fujii, T.; Kondo, H. Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; pp. 409–416. [Google Scholar]
- Evans, R.M. Maxwell’s color photograph. Sci. Am. 1961, 205, 118–131. [Google Scholar] [CrossRef]
- Smith, A.R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- Yu, C.-M.; Lin, Y.-H. Experimental Analysis of a Visual-Recognition Control for an Autonomous Underwater Vehicle in a Towing Tank. Appl. Sci. 2020, 10, 2480. [Google Scholar] [CrossRef] [Green Version]
- Woods, R.; Gonzalez, R. Real-time digital image enhancement. Proceedings of the IEEE 1981, 69, 643–654. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson: Upper Saddle River, NJ, USA, 2007; Volume 2, p. 1. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [Google Scholar] [CrossRef]
- Teh, C.-H.; Chin, R.T. On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.J.; Rauh, W.; Warnecke, H.-J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 2001, 34, 2283–2303. [Google Scholar] [CrossRef]
- Gandhi, R. R-cnn, fast r-cnn, faster r-cnn, yolo—object detection algorithms. Available online: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e (accessed on 27 March 2021).
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy logic= computing with words. In Computing with Words in Information/Intelligent Systems 1; Springer: Cham, Switzerland, 1999; pp. 3–23. [Google Scholar]
- Dubois, D.; Prade, H. Fuzzy logics and the generalized modus ponens revisited. Cybern. Syst. 1984, 15, 293–331. [Google Scholar] [CrossRef]
- Kiszka, J.B.; Kochańska, M.E.; Sliwińska, D.S. The influence of some fuzzy implication operators on the accuracy of a fuzzy model-Part I. Fuzzy Sets Syst. 1985, 15, 111–128. [Google Scholar] [CrossRef]
- Smith, S.; Rae, G.; Anderson, D. Applications of fuzzy logic to the control of an autonomous underwater vehicle. In Proceedings of the 1993 Second IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 28 March–1 April 1993; pp. 1099–1106. [Google Scholar]
- Kalman, R.E. A New approach to Linear Filtering and Prediction Problems. J. Basic Eng. Mar. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Sorenson, H.W.; Stubberud, A.R. Non-linear filtering by approximation of the a posteriori density. Int. J. Control 1968, 8, 33–51. [Google Scholar] [CrossRef]
- Alspach, D.; Sorenson, H. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control 1972, 17, 439–448. [Google Scholar] [CrossRef]
- Chen, S. Kalman filter for robot vision: A survey. IEEE Trans. Ind. Electron. 2011, 59, 4409–4420. [Google Scholar] [CrossRef]
Test | Object | |||
---|---|---|---|---|
A | Sphere | (150, 20, 20) | (1, 100, 100) | (10, 240, 219) |
B | (200, 20, 20) | (1, 100, 100) | (10, 240, 219) | |
C | (220, 20, 20) | (1, 100, 100) | (10, 240, 219) | |
D | (255, 20, 20) | (1, 100, 100) | (10, 240, 219) | |
E | Sphere and Ellipsoid | (150, 20, 20) | (1, 100, 100) | (10, 240, 219) |
F | (200, 20, 20) | (1, 100, 100) | (10, 240, 219) | |
G | (220, 20, 20) | (1, 100, 100) | (10, 240, 219) | |
H | (255, 20, 20) | (1, 100, 100) | (10, 240, 219) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Yu, C.-M.; Wu, C.-Y. Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller. Sensors 2021, 21, 4053. https://doi.org/10.3390/s21124053
Lin Y-H, Yu C-M, Wu C-Y. Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller. Sensors. 2021; 21(12):4053. https://doi.org/10.3390/s21124053
Chicago/Turabian StyleLin, Yu-Hsien, Chao-Ming Yu, and Chia-Yu Wu. 2021. "Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller" Sensors 21, no. 12: 4053. https://doi.org/10.3390/s21124053
APA StyleLin, Y. -H., Yu, C. -M., & Wu, C. -Y. (2021). Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller. Sensors, 21(12), 4053. https://doi.org/10.3390/s21124053