Sensitivity to Haptic Sound-Localization Cues at Different Body Locations
<p>Illustration of the tactile stimulation probe placements that were used in the current study: lower tricep (panel (<b>A</b>)) and dorsal and palmar wrist (panel (<b>B</b>)).</p> "> Figure 2
<p>A speech sample and its amplitude envelope, which was used to modulate the amplitude of the tactile stimulus in the current study. The original audio waveform is shown in blue and the extracted amplitude-envelope is highlighted with a thick orange line. The spoken text is marked above the stimulus.</p> "> Figure 3
<p>Schematic representation of the experimental set up for the testing phase, with the participant sitting in front of two tactile vibrometers and a computer monitor.</p> "> Figure 4
<p>Panel (<b>A</b>): across-wrist tactile intensity difference thresholds for each body location. For reference, the dashed light blue line shows across-ear intensity difference discrimination thresholds in young normal-hearing adults (based on data from [<a href="#B20-sensors-21-03770" class="html-bibr">20</a>]). Panel (<b>B</b>): detection thresholds for the unmodulated stimuli at each location (averaged across left and right limbs). Panel (<b>C</b>): the usable dynamic range at each location (averaged across left and right limbs). The dotted dark blue line shows the dynamic range available through electrical CI stimulation (based on data from [<a href="#B25-sensors-21-03770" class="html-bibr">25</a>,<a href="#B26-sensors-21-03770" class="html-bibr">26</a>]). In all of the panels, the error bars show the standard error of the mean.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Partipants
2.2. Stimuli
2.3. Apparatus
2.4. Procedure
3. Results
4. Discussion
4.1. Limitations
4.2. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, B.S. Getting a decent (but sparse) signal to the brain for users of cochlear implants. Hear. Res. 2015, 322, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Spriet, A.; Van Deun, L.; Eftaxiadis, K.; Laneau, J.; Moonen, M.; van Dijk, B.; van Wieringen, A.; Wouters, J. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM™ in the Nucleus Freedom™ cochlear implant system. Ear Hear. 2007, 28, 62–72. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Hadeedi, A.; Goehring, T.; Mills, S.R. Electro-haptic enhancement of speech-in-noise performance in cochlear implant users. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, M.D.; Song, H.; Perry, S.W. Electro-haptic stimulation enhances speech recognition in spatially separated noise for cochlear implant users. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Dorman, M.F.; Loiselle, L.H.; Cook, S.J.; Yost, W.A.; Gifford, R.H. Sound source localization by normal-hearing listeners, hearing-impaired listeners and cochlear implant listeners. Audiol. Neurotol. 2016, 21, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, M.D.; Cunningham, R.O.; Mills, S.R. Electro-haptic enhancement of spatial hearing in cochlear implant users. Sci. Rep. 2020, 10, 1621–1628. [Google Scholar] [CrossRef]
- Fletcher, M.D. Using haptic stimulation to enhance auditory perception in hearing-impaired listeners. Expert Rev. Med. Devices 2021, 18, 63–74. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Verschuur, C.A. Electro-haptic stimulation: A new approach for improving cochlear-implant listening. Front. Neurosci. 2021, 15, 581414. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Mills, S.R.; Goehring, T. Vibro-tactile enhancement of speech intelligibility in multi-talker noise for simulated cochlear implant listening. Trends Hear. 2018, 22, 1–11. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Zgheib, J. Haptic sound-localisation for use in cochlear implant and hearing-aid users. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Bodington, E.; Saeed, S.R.; Smith, M.C.F.; Stocks, N.G.; Morse, R.P. A narrative review of the logistic and economic feasibility of cochlear implants in lower-income countries. Cochlear Implant Int. 2021, 22, 7–16. [Google Scholar] [CrossRef]
- World Health Organization. Multi-Country Assessment of National Capacity to Provide Hearing Care; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Fletcher, M.D.; Zgheib, J.; Perry, S.W. Sensitivity to haptic sound-localisation cues. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Papetti, S.; Jarvelainen, H.; Giordano, B.L.; Schiesser, S.; Frohlich, M. Vibrotactile sensitivity in active touch: Effect of pressing force. IEEE Trans. Haptics 2016, 10, 113–122. [Google Scholar] [CrossRef]
- Brooks, P.L.; Frost, B.J. Evaluation of a tactile vocoder for word recognition. J. Acoust. Soc. Am. 1983, 74, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.D.; Thini, N.; Perry, S.W. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Perrotta, M.V.; Asgeirsdottir, T.; Eagleman, D.M. Deciphering sounds through patterns of vibration on the skin. Neuroscience 2021, 458, 77–86. [Google Scholar] [CrossRef]
- Dementyev, A.; Olwal, A.; Lyon, R.F. Haptics with input: Back-EMF in linear resonant actuators to enable touch, pressure and environmental awareness. In Proceedings of the UIST ‘20: The 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual Event, 20–23 October 2020. [Google Scholar]
- Pezent, E.; Israr, A.; Samad, M.; Robinson, S.; Agarwal, P.; Benko, H.; Colonnese, N. Tasbi: Multisensory squeeze and vibrotactile wrist haptics for augmented and virtual reality. In Proceedings of the World Haptics Conference (WHC), Tokyo, Japan, 9–12 July 2019; pp. 1–6. [Google Scholar]
- Grantham, D.W. Interaural intensity discrimination: Insensitivity at 1000 Hz. J. Acoust. Soc. Am. 1984, 75, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Musa-Shufani, S.; Walger, M.; Von Wedel, H.; Meister, H. Influence of dynamic compression on directional hearing in the horizontal plane. Ear Hear. 2006, 27, 279–285. [Google Scholar] [CrossRef]
- Grantham, D.W.; Ashmead, D.H.; Ricketts, T.A.; Haynes, D.S.; Labadie, R.F. Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS+ processing. Ear Hear. 2008, 29, 33–44. [Google Scholar] [CrossRef]
- Peters, B.R.; Wyss, J.; Manrique, M. Worldwide trends in bilateral cochlear implantation. Laryngoscope 2010, 120, S17–S44. [Google Scholar] [CrossRef]
- Feddersen, W.E.; Sandel, T.T.; Teas, D.C.; Jeffress, L.A. Localization of high-frequency tones. J. Acoust. Soc. Am. 1957, 29, 988–991. [Google Scholar] [CrossRef]
- Zeng, F.-G.; Galvin, J.J. Amplitude mapping and phoneme recognition in cochlear implant listeners. Ear Hear. 1999, 20, 60–74. [Google Scholar] [CrossRef]
- Zeng, F.-G.; Grant, G.; Niparko, J.; Galvin, J.; Shannon, R.; Opie, J.; Segel, P. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am. 2002, 111, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verrillo, R.T.; Fraioli, A.J.; Smith, R.L. Sensation magnitude of vibrotactile stimuli. Percept. Psychophys. 1969, 6, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Verrillo, R.T. Effect of contactor area on the vibrotactile threshold. J. Acoust. Soc. Am. 1963, 35, 1962–1966. [Google Scholar] [CrossRef]
- Verrillo, R.T. Vibrotactile thresholds for hairy skin. J. Exp. Psychol. 1966, 72, 47–50. [Google Scholar] [CrossRef]
- Verrillo, R.T. Vibrotactile thresholds measured at the finger. Percept. Psychophys. 1971, 9, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Wilska, A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol. Scand. 1954, 31, 285–289. [Google Scholar] [CrossRef]
- Thornton, A.R.D.; Phillips, A.J. A comparative trial of four vibrotactile aids. In Tactile Aids for the Hearing Impaired; Summers, I.R., Ed.; Whur: London, UK, 1992; pp. 231–251. [Google Scholar]
- James, J.; Rapuano, S.; De Vito, L.; Daponte, P. Haptics enhanced interface for remote control of measurement instrumentation. In Proceedings of the International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 435–440. [Google Scholar]
- Rossa, C.; Fong, J.; Usmani, N.; Sloboda, R.; Tavakoli, M. Multiactuator haptic feedback on the wrist for needle steering guidance in brachytherapy. IEEE Robot. Autom. Lett. 2016, 1, 852–859. [Google Scholar] [CrossRef]
- Aggravi, M.; Salvietti, G.; Prattichizzo, D. Haptic wrist guidance using vibrations for human-robot teams. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 113–118. [Google Scholar] [CrossRef] [Green Version]
- Verrillo, R.T. Temporal summation in vibrotactile sensitivity. J. Acoust. Soc. Am. 1965, 37, 843–846. [Google Scholar] [CrossRef]
- Whitehouse, D.J.; Griffin, M.J. A comparison of vibrotactile thresholds obtained using different diagnostic equipment: The effect of contact conditions. Int. Arch. Occup. Environ. Health 2002, 75, 85–89. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO-13091-1:2001 Mechanical Vibration–Vibrotactile Perception Thresholds for the Assessment of Nerve Dysfunction–Part 1: Methods of Measurement at the Fingertips; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- British Standards Institution. BS-6842:1987. Guide to Measurement and Evaluation of Human Exposure to Vibration Transmitted to the Hand; British Standards Institution: London, UK, 1987. [Google Scholar]
- Holm, S. A Simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Griffin, M.J.; Lawton, B.W.; Lutman, M.E.; Martin, A.M.; Paddan, G.S.; Walker, J.G. Guide to Experimentation Involving Human Subjects; University of Southampton Institute of Sound and Vibration Research: Southampton, UK, 1996. [Google Scholar]
- Bench, J.; Kowal, Å.; Bamford, J. The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. Br. J. Audiol. 1979, 13, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, M.; Verrillo, R.T.; Zahorian, S.A.; Brachman, M.L.; Bolanowski, S.J. Vibrotactile frequency for encoding a speech parameter. J. Acoust. Soc. Am. 1977, 62, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, J.E.; Cheron, G. Somatosensory evoked potentials to finger stimulation in healthy octogenarians and in young adults: Wave forms, scalp topography and transit times of pariental and frontal components. Electroencephalogr. Clin. Neurophysiol. 1980, 50, 404–425. [Google Scholar] [CrossRef]
- Geffen, G.; Rosa, V.; Luciano, M. Effects of preferred hand and sex on the perception of tactile simultaneity. J. Clin. Exp. Neuropsychol. 2000, 22, 219–231. [Google Scholar] [CrossRef]
- Bess, F.H.; Dodd-Murphy, J.; Parker, R.A. Children with minimal sensorineural hearing loss: Prevalence, educational performance, and functional status. Ear Hear. 1998, 19, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, C.; Cohen, H. Speech and language development following cochlear implantation. J. Neurolinguist. 1999, 12, 271–288. [Google Scholar] [CrossRef]
- Kushalnagar, P.; Mathur, G.; Moreland, C.J.; Napoli, D.J.; Osterling, W.; Padden, C.; Rathmann, C. Infants and children with hearing loss need early language access. J. Clin. Ethic 2010, 21, 143–154. [Google Scholar]
- Lieu, J.E.C. Speech-language and educational consequences of unilateral hearing loss in children. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 524–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Deafness and Hearing Loss. Available online: https://www.who.int/mediacentre/factsheets/fs300/en/ (accessed on 26 May 2021).
- Tucci, D.L.; Merson, M.H.; Wilson, B.S. A Summary of the literature on global hearing impairment. Otol. Neurotol. 2010, 31, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.A.; Fitzgerald, M.B. Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc. Natl. Acad. Sci. USA 2001, 98, 12307–12312. [Google Scholar] [CrossRef] [Green Version]
- Brooks, P.L.; Frost, B.J.; Mason, J.L.; Chung, K. Acquisition of a 250-word vocabulary through a tactile vocoder. J. Acoust. Soc. Am. 1985, 77, 1576–1579. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.W.; Ardell, L.A.; Bourgeois, M.; Wiedmer, B.; Kuhl, P.K. Investigating the MESA (Multipoint Electrotactile Speech Aid): The transmission of connected discourse. J. Acoust. Soc. Am. 1979, 65, 810–815. [Google Scholar] [CrossRef]
- Francart, T.; Lenssen, A.; Wouters, J. Enhancement of interaural level differences improves sound localization in bimodal hearing. J. Acoust. Soc. Am. 2011, 130, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.A. Binaural enhancement for bilateral cochlear implant users. Ear Hear. 2014, 35, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goehring, T.; Bolner, F.; Monaghan, J.; van Dijk, B.; Zarowski, A.; Bleeck, S. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Hear. Res. 2017, 344, 183–194. [Google Scholar] [CrossRef]
- Goehring, T.; Keshavarzi, M.; Carlyon, R.P.; Moore, B.C.J. Using recurrent neural networks to improve the perception of speech in non-stationary noise by people with cochlear implants. J. Acoust. Soc. Am. 2019, 146, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Scheggi, S.; Salvietti, G. Haptic guidance in urban search and rescue scenarios with reduced visibility. In Proceedings of the 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing; Research on Electric and Electronic Measurement for the Economic Upturn: Benevento, Italy, September 2014. [Google Scholar]
- De Angelis, S.; Princi, A.; Farra, F.D.; Morone, G.; Caltagirone, C.; Tramontano, M. Vibrotactile-based rehabilitation on balance and gait in patients with neurological diseases: A systematic review and metanalysis. Brain Sci. 2021, 11, 518. [Google Scholar] [CrossRef]
Part ID | Age (Years) | Sex | Dom Hand | Vib Thresh, 31.5 Hz, Right (ms−2 RMS) | Vib Thresh, 31.5 Hz, Left (ms−2 RMS) | Vib Thresh, 125 Hz, Right (ms−2 RMS) | Vib Thresh 125 Hz, Left (ms−2 RMS) |
---|---|---|---|---|---|---|---|
1 | 22 | F | R | 0.039 | 0.039 | 0.063 | 0.042 |
2 | 33 | M | R | 0.020 | 0.020 | 0.035 | 0.049 |
3 | 26 | M | R | 0.044 | 0.053 | 0.091 | 0.094 |
4 | 24 | M | R | 0.072 | 0.087 | 0.159 | 0.062 |
5 | 32 | M | R | 0.031 | 0.020 | 0.026 | 0.017 |
6 | 26 | F | R | 0.046 | 0.018 | 0.019 | 0.022 |
7 | 25 | F | R | 0.031 | 0.031 | 0.073 | 0.045 |
8 | 27 | F | R | 0.034 | 0.032 | 0.063 | 0.061 |
9 | 25 | F | R | 0.014 | 0.031 | 0.037 | 0.077 |
10 | 25 | M | R | 0.046 | 0.018 | 0.189 | 0.077 |
11 | 26 | F | R | 0.019 | 0.041 | 0.027 | 0.038 |
12 | 28 | M | R | 0.033 | 0.021 | 0.068 | 0.044 |
Mean | 26.6 | NA | NA | 0.036 | 0.034 | 0.071 | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fletcher, M.D.; Zgheib, J.; Perry, S.W. Sensitivity to Haptic Sound-Localization Cues at Different Body Locations. Sensors 2021, 21, 3770. https://doi.org/10.3390/s21113770
Fletcher MD, Zgheib J, Perry SW. Sensitivity to Haptic Sound-Localization Cues at Different Body Locations. Sensors. 2021; 21(11):3770. https://doi.org/10.3390/s21113770
Chicago/Turabian StyleFletcher, Mark D., Jana Zgheib, and Samuel W. Perry. 2021. "Sensitivity to Haptic Sound-Localization Cues at Different Body Locations" Sensors 21, no. 11: 3770. https://doi.org/10.3390/s21113770
APA StyleFletcher, M. D., Zgheib, J., & Perry, S. W. (2021). Sensitivity to Haptic Sound-Localization Cues at Different Body Locations. Sensors, 21(11), 3770. https://doi.org/10.3390/s21113770