On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance
<p>Approach applied to predict the RUL of power connectors.</p> "> Figure 2
<p>Oxidation multi-spot contact resistance degradation model. As can be observed, at <span class="html-italic">t = t<sub>m</sub></span> the model predicts a vertical asymptote.</p> "> Figure 3
<p>Detail of <a href="#sensors-21-03739-f002" class="html-fig">Figure 2</a> up to <span class="html-italic">t/t<sub>m</sub></span> = 0.3 together with the proposed RUL criterion, corresponding to the inflection point of (3).</p> "> Figure 4
<p>Steps required to determine the RUL of the connectors.</p> "> Figure 5
<p>ICAU120 Al-Cu connectors. (<b>a</b>) Before compression. (<b>b</b>) CAD drawing after compression including the bolting elements.</p> "> Figure 6
<p>The electrical loop used in the heat cycle tests. (<b>a</b>) Schematic of the electrical loop. (<b>b</b>) Loop used in the heath cycle tests. (<b>c</b>) Measurement of the contact resistance.</p> "> Figure 7
<p>Measurements done in connector #2 during two heat cycles. (<b>a</b>) Current. (<b>b</b>) Voltage drop. (<b>c</b>) Temperature. (<b>d</b>) Resistance.</p> "> Figure 8
<p>Detail of the fitting of the multi-spot electrical resistance models during the 92.5 h of the heat cycle tests for connector #1. Experimental (red-blue) and fitted (black) values of the electrical resistance versus time and threshold value settled by the inflection point of (3). (<b>a</b>) 20–72 model, where 20 refers to the data collected during the first 20 h to fit the model, and 72 refers to the prediction done for the next 72 h (<span class="html-italic">R</span><sup>2</sup> = 0.874). (<b>b</b>) 40–52 model (<span class="html-italic">R</span><sup>2</sup> = 0.967). (<b>c</b>) 60–32 model (<span class="html-italic">R</span><sup>2</sup> = 0.972). (<b>d</b>) 80–12 mode (<span class="html-italic">R</span><sup>2</sup> = 0.981).</p> "> Figure 9
<p>Fitting of the multi-spot electrical resistance models during the 92.5 h of the heat cycle tests until the conductors reach thermal equilibrium at 120 °C for the seven connectors (#1 to #7), considering four models (20-72, 40-52, 60-32 and 80-12 models). (<b>a</b>) #1. (<b>b</b>) #2. (<b>c</b>) #3. (<b>d</b>) #4. (<b>e</b>) #5. (<b>f</b>) #6. (<b>g</b>) #7.</p> ">
Abstract
:1. Introduction
2. Resistance-Based Degradation Models
2.1. Connector’s Electrical Resistance
2.2. Resistance Degradation Model
2.3. Parameter Identification
2.4. RUL Criterion
3. Tested Connectors and Experimental Setup to Determine the RUL of the Analyzed Connectors
3.1. Electrical Connectors
3.2. Connector Degradation Stress by Applying Heat Cycle Tests
4. Sensors and Equipment Used
5. Experimental Results and RUL Model Assessment
5.1. Experimental Assessment of the Electrical Resistance Degradation Model (ERDM)
5.2. On-Line RUL Prediction Based on Different Prediction Horizons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, J.; Gomez-Pau, A.; Riba, J.-R.; Moreno-Eguilaz, M. On-Line Health Condition Monitoring of Power Connectors Focused on Predictive Maintenance. IEEE Trans. Power Deliv. 2020, 1. [Google Scholar] [CrossRef]
- Carvou, E.; El Abdi, R.; Razafiarivelo, J.; Benjemaa, N.; Zindine, E.M. Thermo-mechanical study of a power connector. Measurement 2012, 45, 889–896. [Google Scholar] [CrossRef]
- Pascucci, V.; Ryan, A.; Martinson, B.; Hsu, I.; Dandl, C.; Conde, P.; Chan, B.; Kirkbride, S. A Standardized Reliability Evaluation Framework for Connections. In SMTA International; SMTA: Rosemont, IL, USA, 2016; pp. 1–10. [Google Scholar]
- Kadechkar, A.; Moreno-Eguilaz, M.; Riba, J.-R.; Capelli, F. Low-Cost Online Contact Resistance Measurement of Power Connectors to Ease Predictive Maintenance. IEEE Trans. Instrum. Meas. 2019, 68, 4825–4833. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Zhao, C.; Qin, H.; Yang, J. Influence of mechanical faults on electrical resistance in high voltage circuit breaker. Int. J. Electr. Power Energy Syst. 2021, 129, 106827. [Google Scholar] [CrossRef]
- Riba, J.-R.; Mancini, A.-G.; Abomailek, C.; Capelli, F. 3D-FEM-Based Model to Predict the Electrical Constriction Resistance of Compressed Contacts. Measurement 2018, 114, 44–50. [Google Scholar] [CrossRef]
- Jiang, J.-R.; Lee, J.-E.; Zeng, Y.-M. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life. Sensors 2019, 20, 166. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Xu, A.; Wang, K.; Sun, Y.; Han, X.; Hong, S.H.; Yu, M. Particle Filtering Based Remaining Useful Life Prediction for Electromagnetic Coil Insulation. Sensors 2021, 21, 473. [Google Scholar] [CrossRef]
- Verstraete, D.; Droguett, E.; Modarres, M. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors 2019, 20, 176. [Google Scholar] [CrossRef] [Green Version]
- Praveen, H.M.; Jaikanth, A.; Inturi, V.; Sabareesh, G.R. Fingerprinting based data abstraction technique for remaining useful life estimation in a multi-stage gearbox. Measurement 2021, 174, 109021. [Google Scholar] [CrossRef]
- Slade, P.G. Electrical Contacts: Principles and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sun, B.; Li, Y.; Wang, Z.; Ren, Y.; Feng, Q.; Yang, D.; Lu, M.; Chen, X. Remaining useful life prediction of aviation circular electrical connectors using vibration-induced physical model and particle filtering method. Microelectron. Reliab. 2019, 92, 114–122. [Google Scholar] [CrossRef]
- Capelli, F.; Riba, J.; Ruperez, E.; Sanllehi, J. A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements. IEEE Trans. Instrum. Meas. 2017, 66, 2437–2447. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.F.; Santoso, S. Condition monitoring of circuit switchers for shunt capacitor banks through power quality data. IEEE Trans. Power Deliv. 2019, 34, 1499–1507. [Google Scholar] [CrossRef]
- Raghavan, A.; Kiesel, P.; Teepe, M.; Cheng, F.; Chen, Q.; Karin, T.; Jung, D.; Mostafavi, S.; Smith, M.; Stinson, R.; et al. Low-cost embedded optical sensing systems for distribution transformer monitoring. IEEE Trans. Power Deliv. 2021, 36, 1007–1014. [Google Scholar] [CrossRef]
- Hashemian, H.M.; Bean, W.C. State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 2011, 60, 3480–3492. [Google Scholar] [CrossRef]
- Liu, H.; Claeys, T.; Pissoort, D.; Vandenbosch, G.A.E. Prediction of Capacitor’s Accelerated Ageing Based on Advanced Measurements and Deep Neural Network Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9019–9027. [Google Scholar] [CrossRef]
- Zeming, L.; Jianmin, G.; Hongquan, J. A maintenance support framework based on dynamic reliability and remaining useful life. Measurement 2019, 147, 106835. [Google Scholar] [CrossRef]
- Kadechkar, A.; Riba, J.-R.; Moreno-Eguilaz, M.; Sanllehi, J. Real-time wireless, contactless, and coreless monitoring of the current distribution in substation conductors for fault diagnosis. IEEE Sens. J. 2019, 19, 1693–1700. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC TS 61586:2017 Estimation of the Reliability of Electrical Connectors 2017; International Electrotechnical Commission: Geneva, Switzerland, 2017; pp. 1–55. [Google Scholar]
- El Abdi, R.; Carvou, E.; Benjemaa, N. Electrical resistance change of automotive connectors submitted to vibrations and temperature. In 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 1910–1913. [Google Scholar]
- Huang, B.; Li, X.; Zeng, Z.; Chen, N. Mechanical behavior and fatigue life estimation on fretting wear for micro-rectangular electrical connector. Microelectron. Reliab. 2016, 66, 106–112. [Google Scholar] [CrossRef]
- Li, Q.; Gao, J.; Xie, G.; Jin, Q.; Ji, R. Lifetime prediction of electrical connectors under multiple environment stresses of temperature and particulate contamination. J. China Univ. Posts Telecommun. 2016, 23, 61, 67–81. [Google Scholar]
- Ren, Y.; Feng, Q.; Ye, T.; Sun, B. A Novel Model of Reliability Assessment for Circular Electrical Connectors. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 755–761. [Google Scholar] [CrossRef]
- Zhang, B.; Sui, Y.; Bu, Q.; He, X. Remaining useful life estimation for micro switches of railway vehicles. Control. Eng. Pract. 2019, 84, 82–91. [Google Scholar] [CrossRef]
- Lall, P.; Sakalaukus, P.; Lowe, R.; Goebel, K. Leading indicators for prognostic health management of electrical connectors subjected to random vibration. In InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM; IEEE: Piscataway, NJ, USA, 2012; pp. 632–638. [Google Scholar]
- Braunovic, M.; Izmailov, V.V.; Novoselova, M.V. A model for life time evaluation of closed electrical contacts. In Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2005; Volume 2005, pp. 217–223. [Google Scholar]
- Stengel, D.; Bardl, R.; Kuhnel, C.; Grosmannn, S.; Kiewitt, W. Accelerated electrical and mechanical ageing tests of high temperature low sag (HTLS) conductors. In 2017 12th International Conference on Live Maintenance (ICOLIM); IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Kadechkar, A.; Riba, J.R.; Moreno-Eguilaz, M.; Capelli, F.; Gonzalez, D. On-line Resistance Measurement of Substation Connectors Focused on Predictive Maintenance. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC); IEEE: Piscataway, NJ, USA, 2018; pp. 846–851. [Google Scholar]
- Capelli, F.; Riba, J.-R.; Sanllehí, J. Finite element analysis to predict temperature rise tests in high-capacity substation connectors. IET Gener. Transm. Distrib. 2017, 11, 2283–2291. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, G.; Qin, H.; Liu, W.; Wang, J.; Yang, J. Study on the influence of speed in DRM of SF6 circuit breaker. Int. J. Electr. Power Energy Syst. 2020, 121, 106067. [Google Scholar] [CrossRef]
- Rommel, D.P.; Di Maio, D.; Tinga, T. Transformer hot spot temperature prediction based on basic operator information. Int. J. Electr. Power Energy Syst. 2021, 124, 106340. [Google Scholar] [CrossRef]
- Kadechkar, A.; Riba, J.R.; Moreno-Eguilaz, M.; Perez, J. SmartConnector: A Self-Powered IoT Solution to Ease Predictive Maintenance in Substations. IEEE Sens. J. 2020, 20, 11632–11641. [Google Scholar] [CrossRef]
- AENOR UNE-EN 573-3:2014. Aluminium and Aluminium Alloys—Chemical Composition and Form of Wrought Products—Part 3: Chemical Composition and Form of Products. Available online: http://www.ca.aenor.es/ (accessed on 27 May 2021).
- AENOR UNE-EN 13601:2014. Copper and Copper alloys—Copper Rod, Bar and Wire for General Electrical Purposes. Available online: http://www.ca.aenor.es/ (accessed on 27 May 2021).
- Abomailek, C.; Riba, J.-R.; Capelli, F.; Moreno-Eguilaz, M. Fast electro-thermal simulation of short-circuit tests. IET Gener. Transm. Distrib. 2017, 11, 2124–2129. [Google Scholar] [CrossRef] [Green Version]
- International Electrotechnical Commission. IEC 61238-1-3:2018 Compression and Mechanical Connectors for Power Cables—Part 1–3: Test Methods and Requirements for Compression and Mechanical Connectors for Power Cables for Rated Voltages above 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) Tested on Non-Insulated Conductors; International Electrotechnical Commission: Geneva, Switzerland, 2018; pp. 1–89. [Google Scholar]
- Moustafa, G. Ageing of Aluminum Power Connectors Based on Current Cycle Test. Eur. J. Eng. Res. Sci. 2019, 4, 110–114. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Z.; Jiang, G.; Zhao, F.; Mei, X. Remaining useful life prediction for machinery by establishing scaled-corrected health indicators. Measurement 2020, 163, 108035. [Google Scholar] [CrossRef]
- Zhang, H.; Su, B.; Song, H.; Xiong, W. Development and implement of an inspection robot for power substation. In IEEE Intelligent Vehicles Symposium, Proceedings; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 121–125. [Google Scholar]
Connector | #1 | #2 | #3 | #4 | #5 | #6 | #7 |
---|---|---|---|---|---|---|---|
R0 (µΩ) | 28.0 | 25.3 | 32.0 | 34.2 | 24.4 | 24.9 | 43.3 |
tm (h) | 398.2 | 1281.8 | 1936.3 | 2645.7 | 5582.7 | 471.7 | 1754.4 |
R2 | 0.988 | 0.895 | 0.882 | 0.918 | 0.893 | 0.967 | 0.913 |
Connector | #1 | #2 | #3 | #4 | #5 | #6 | #7 | |
---|---|---|---|---|---|---|---|---|
R0 (Ω) | 30.4 | 24.8 | 30.8 | 32.0 | 24.9 | 28.4 | 46.90 | |
20-72 | tm (h) | 519.3 | 1219.8 | 1369.0 | 1010.1 | 11,549.6 | 905.7 | 14,306.3 |
RUL (h) | 25.0 | 58.8 | 66.0 | 48.7 | 557.1 | 43.7 | 690.1 | |
R0 (Ω) | 30.6 | 24.9 | 30.8 | 32.9 | 24.8 | 28.6 | 46.4 | |
40-52 | tm (h) | 548.3 | 1218.3 | 1321.1 | 1502.4 | 8933.4 | 1023.7 | 8144.4 |
RUL (h) | 26.4 | 58.8 | 63.7 | 72.5 | 430.9 | 49.4 | 392.8 | |
R0 (Ω) | 29.8 | 24.2 | 30.8 | 33.5 | 24.8 | 27.2 | 43.9 | |
60-32 | tm (h) | 486.0 | 938.9 | 1339.9 | 2056.2 | 9408.6 | 683.9 | 2129.4 |
RUL (h) | 23.4 | 45.3 | 64.6 | 99.2 | 453.8 | 33.0 | 102.7 | |
R0 (Ω) | 28.7 | 24.8 | 31.1 | 34.1 | 24.5 | 25.4 | 43.2 | |
80-12 | tm (h) | 424.6 | 1117.1 | 1481.1 | 2595.7 | 6451.3 | 505.5 | 1725.6 |
RUL (h) | 20.5 | 53.9 | 71.4 | 125.2 | 311.2 | 24.4 | 83.2 |
Connector | #1 | #2 | #3 | #6 | Error [h] | |
---|---|---|---|---|---|---|
Measured | 32.7 | 53.1 | 72.2 | 50.8 | - | |
20-72 | ERDM | 25.0 | 58.8 | 66.0 | 43.7 | 26.7 |
ARIMA | 30.8 | 54.6 | 55.6 | 56.8 | 26.0 | |
Measured | 32.7 | 53.1 | 72.2 | 50.8 | - | |
40-52 | ERDM | - | 58.8 | 63.7 | 49.4 | 15.6 |
ARIMA | - | 82.4 | >92 | 73.1 | >51.6 | |
Measured | - | - | 72.2 | 50.8 | - | |
60-32 | ERDM | - | - | 64.6 | - | 7.6 |
ARIMA | - | - | 83.6 | - | 11.4 | |
Total error | ERDM | 49.9 | ||||
ARIMA | >89.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riba, J.-R.; Gómez-Pau, Á.; Martínez, J.; Moreno-Eguilaz, M. On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance. Sensors 2021, 21, 3739. https://doi.org/10.3390/s21113739
Riba J-R, Gómez-Pau Á, Martínez J, Moreno-Eguilaz M. On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance. Sensors. 2021; 21(11):3739. https://doi.org/10.3390/s21113739
Chicago/Turabian StyleRiba, Jordi-Roger, Álvaro Gómez-Pau, Jimmy Martínez, and Manuel Moreno-Eguilaz. 2021. "On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance" Sensors 21, no. 11: 3739. https://doi.org/10.3390/s21113739
APA StyleRiba, J. -R., Gómez-Pau, Á., Martínez, J., & Moreno-Eguilaz, M. (2021). On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance. Sensors, 21(11), 3739. https://doi.org/10.3390/s21113739