Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna
<p>Schematic of the integrated optical electric field sensor: (<b>a</b>) sensor structure; (<b>b</b>) antenna and electrode; (<b>c</b>) x-z plane cross section.</p> "> Figure 2
<p>Diagram of the sensor simulation model.</p> "> Figure 3
<p>Different structures resonant frequency.</p> "> Figure 4
<p>The relationships between the resonance frequency <span class="html-italic">F<sub>r</sub></span> and the LN substrate and the relative permittivity of the packaging material: (<b>a</b>) <span class="html-italic">F<sub>r</sub></span> versus <span class="html-italic">W<sub>LN</sub></span>; (<b>b</b>) <span class="html-italic">F<sub>r</sub></span> versus <span class="html-italic">T<sub>LN</sub></span>; (<b>c</b>) <span class="html-italic">F<sub>r</sub></span> versus <span class="html-italic">L<sub>LN</sub></span>; (<b>d</b>) <span class="html-italic">F<sub>r</sub></span> versus <span class="html-italic">ε<sub>r</sub></span>.</p> "> Figure 5
<p>Transmission characteristics of OWG: (<b>a</b>) Y-branch OWG; (<b>b</b>) integrated OWG.</p> "> Figure 6
<p>Fabricate process: (<b>a</b>) Cr-plated barrier; (<b>b</b>) coat with photoresist; (<b>c</b>) align and expose; (<b>d</b>) develop; (<b>e</b>) etch; (<b>f</b>) proton exchange; (<b>g</b>) finished OWG; (<b>h</b>) Sputter SiO<sub>2</sub> buffer layer; (<b>i</b>) coat with photoresist again; (<b>j</b>) align and expose again; (<b>k</b>) develop again; (<b>l</b>) plate antenna and electrode; (<b>m</b>) ultrasonic stripping.</p> "> Figure 7
<p>Photograph of the packaged sensor.</p> "> Figure 8
<p>Schematic of sensor frequency response measurement setup.</p> "> Figure 9
<p>Photograph of sensor frequency response measurement setup: (<b>a</b>) radiation area; (<b>b</b>) receiving area.</p> "> Figure 10
<p>The frequency response of the experiment and simulation.</p> "> Figure 11
<p>Schematic of time-domain response measurement setup.</p> "> Figure 12
<p>Time-domain response (100 ns/div): (<b>a</b>) E = 13 kV/m; (<b>b</b>) E = 25 kV/m.</p> "> Figure 13
<p>Sensor input/output characteristics.</p> ">
Abstract
:1. Introduction
2. Sensor Structure and Simulation
2.1. Sensor Structure and Operation Principles
2.2. Sensor Simulation Model
2.3. Simulation and Analysis
3. Sensor Fabrication and Experiment
3.1. Fabrication and Packaging
3.2. Frequency Response Measurement
3.3. Time-Domain Response Measurement
3.4. Dynamic Linear Range
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Chen, F.; Chen, K.; Hu, Z.; Cao, Y. Integrated Optical Electric Field Sensor From 10 kHz to 18 GHz. IEEE Photonics Technol. Lett. 2012, 24, 1106–1108. [Google Scholar] [CrossRef]
- Gutierrez-Martinez, C.; Santos-Aguilar, J.; Meza-Perez, J.; Morales-Diaz, A. Novel electric field sensing scheme using integrated optics linbo3 unbalanced mach-zehnder interferometers and optical delay-modulation. J. Light. Technol. 2017, 35, 27–33. [Google Scholar] [CrossRef]
- Peng, J.; Jia, S.; Bian, J.; Zhang, S.; Liu, J.; Zhou, X. Recent progress on electromagnetic field measurement based on optical sensors. Sensors 2019, 19, 2860. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, L.; Li, Y. Non-invasive measurement of intensive power-frequency electric field using a LiNbO3 -integrated optical waveguide sensor. IET Sci. Meas. Technol. 2021, 15, 101–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Xie, X.; Xiao, D.; He, W. Optimization design and research character of the passive electric field sensor. IEEE Sens. J. 2014, 14, 508–513. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, Y.; Chen, W.; Zhang, B. Measurement of electric field distribution along composite insulators by integrated optical electric field sensor. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 302–310. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, S.; Han, R.; Sima, W.; Liu, T. Intense transient electric field sensor based on the electro-optic effect of LiNbO3. AIP Adv. 2015, 5, 107130. [Google Scholar] [CrossRef] [Green Version]
- Baum, C.; Giles, J.C.; Sower, G.D. Sensors for Electromagnetic Pulse Measurements Both Inside and Away from Nuclear Source Regions. IEEE Trans. Electromagn. Compat. 1978, EMC-20, 22–35. [Google Scholar] [CrossRef]
- Kanda, M. Standard probes for electromagnetic field measurements. IEEE Trans. Antennas Propag. 1993, 41, 1349–1364. [Google Scholar] [CrossRef]
- Feser, K.; Pfaff, W. A Potential Free Spherical Sensor for the Measurement of Transient Electric Fields. IEEE Power Eng. Rev. 1984, PER-4, 42. [Google Scholar] [CrossRef]
- Pasmooij, W.A. Magnetic field sensor with omni-directional sensitivity. In Proceedings of the 9th International Conference on Electromagnetic Compatibility, Manchester, UK, 5–7 September 1994; pp. 47–50. [Google Scholar] [CrossRef]
- Li, T.; Ho, Y.C.; Pommerenke, D. Orthogonal loops probe design and characterization for near-field measurement. In Proceedings of the 2008 IEEE International Symposium on Electromagnetic Compatibility, Detroit, MI, USA, 18–22 August 2008; pp. 7–10. [Google Scholar] [CrossRef]
- Azaro, R.; Caorsi, S. MST probes for electromagnetic fields measurements for EMC applications. In Proceedings of the 2001 IEEE EMC International Symposium. Symposium Record. International Symposium on Electromagnetic Compatibility (Cat. No.01CH37161), Montreal, QC, Canada, 13–17 August 2001; Volume 1, pp. 357–362. [Google Scholar]
- Shimizu, R.; Matsuoka, M.; Kato, K.; Hayakawa, N.; Hikita, M.; Okubo, H. Development of Kerr electro-optic 3-d electric field measuring technique and its experimental verification. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 191–196. [Google Scholar] [CrossRef]
- Gao, C.; Qi, B.; Gao, Y.; Zhu, Z.; Li, C. Kerr Electro-Optic Sensor for Electric Field in Large-Scale Oil-Pressboard Insulation Structure. IEEE Trans. Instrum. Meas. 2019, 68, 3626–3634. [Google Scholar] [CrossRef]
- He, B.; Liu, S.; Zhu, P.; Li, Y.; Cui, D. The working characteristics of electric field measurement based on the Pockels effect for AC-DC hybrid fields. Meas. Sci. Technol. 2018, 29, 125004. [Google Scholar] [CrossRef]
- Kumada, A.; Hidaka, K. Directly high-voltage measuring system based on pockels effect. IEEE Trans. Power Deliv. 2013, 28, 1306–1313. [Google Scholar] [CrossRef]
- Santos, J.C.; Taplamacioglu, M.C.; Hidaka, K. Pockels high-voltage measurement system. IEEE Trans. Power Deliv. 2000, 15, 8–13. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Y.; Zou, X.; Wang, P.; Wang, X. Online measurement of pulsed electric field of insulator surface in vacuum based on kerr effect. IEEE Trans. Plasma Sci. 2014, 42, 2986–2990. [Google Scholar] [CrossRef] [Green Version]
- Garzarella, A.; Dong Ho, W. Non intrusive electromagnetic sensors for ultra wideband applications using electro-optic and magneto-optic materials. In Proceedings of the 2011 IEEE International Conference on Ultra-Wideband (ICUWB), Bologna, Italy, 14–16 September 2011; pp. 240–242. [Google Scholar]
- Bulmer, C.H.; Burns, W.K.; Moeller, R.P. Linear interferometric waveguide modulator for electromagnetic-field detection. Opt. Lett. 1980, 5, 176. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R. Integrated optical E -field sensor based on balanced Mach-Zehnder interferometer. Opt. Eng. 2011, 50, 114404. [Google Scholar] [CrossRef]
- Jung, H. An Integrated Photonic Electric-Field Sensor Utilizing a 1 × 2 YBB Mach-Zehnder Interferometric Modulator with a Titanium-Diffused Lithium Niobate Waveguide and a Dipole Patch Antenna. Crystals 2019, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Wang, B.; Yu, Z.; Chen, W. Design and application of an integrated electro-optic sensor for intensive electric field measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 312–319. [Google Scholar] [CrossRef]
- Tajima, K.; Kobayashi, R.; Kuwabara, N.; Tokuda, M. Development of optical isotropic e-field sensor operating more than 10 GHz using Mach-Zehnder interferometers. IEICE Trans. Electron. 2002, E85-C, 961–968. [Google Scholar]
- Boynton, N.; Cai, H.; Gehl, M.; Arterburn, S.; Dallo, C.; Pomerene, A.; Starbuck, A.; Hood, D.; Trotter, D.; Friedmann, T.; et al. A Heterogeneously Integrated Silicon Photonic/LiNbO3Electro-Optic Modulator. In Proceedings of the 2019 IEEE Optical Interconnects Conference (OI), Santa Fe, NM, USA, 24–26 April 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Zhang, X.; Chung, C.J.; Wang, S.; Subbaraman, H.; Pan, Z.; Zhan, Q.; Chen, R.T. Integrated Broadband Bowtie Antenna on Transparent Silica Substrate. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1377–1381. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhan, Q. Modified bow-tie antenna with strong broadband field enhancement for RF photonic applications. Metamater. Fundam. Appl. VI 2013, 8806, 88061V. [Google Scholar] [CrossRef]
- Mokhtari-Koushyar, F.; Heidari, E.; Dalir, H.; Chung, C.J.; Xu, X.; Sorger, V.J.; Chen, R.T. Wideband Multi-Arm Bow tie Antenna for Millimeter Wave Electro-Optic Sensors and Receivers. J. Light. Technol. 2018, 36, 3418–3426. [Google Scholar] [CrossRef]
- Durgun, A.C.; Balanis, C.A.; Birtcher, C.R.; Allee, D.R. Design, simulation, fabrication and testing of flexible bow-tie antennas. IEEE Trans. Antennas Propag. 2011, 59, 4425–4435. [Google Scholar] [CrossRef]
- Leuthold, J.; Freude, W.; Brosi, J.-M.; Baets, R.; Dumon, P.; Biaggio, I.; Scimeca, M.L.; Diederich, F.; Frank, B.; Koos, C. Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics. Proc. IEEE 2009, 97, 1304–1316. [Google Scholar] [CrossRef]
- Zhang, X.; Hosseini, A.; Subbaraman, H.; Wang, S.; Zhan, Q.; Luo, J.; Jen, A.K.Y.; Chen, R.T. Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator. J. Light. Technol. 2014, 32, 3774–3784. [Google Scholar] [CrossRef]
- Zhang, X.; Chung, C.J.; Hosseini, A.; Subbaraman, H.; Luo, J.; Jen, A.K.Y.; Nelson, R.L.; Lee, C.Y.C.; Chen, R.T. High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide. J. Light. Technol. 2016, 34, 2941–2951. [Google Scholar] [CrossRef]
- Wijayanto, Y.N.; Murata, H.; Okamura, Y. Novel electro-optic microwave-lightwave converters utilizing a patch antenna embedded with a narrow gap. IEICE Electron. Express 2011, 8, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Nur Wijayanto, Y.; Murata, H.; Kawanishi, T.; Okamura, Y. X-cut LiNbO3 microwave-lightwave converters using patch-antennas with a narrow-gap for wireless-over-fiber networks. In Proceedings of the IEEE Photonics Conference 2012, Burlingame, CA, USA, 23–27 September 2012; Volume 4, pp. 582–583. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.Y.; Zhao, Z. Study of an integrated optical waveguide sensor with a tapered antenna for measurement of intense pulsed electric field. Optik 2020, 218, 164837. [Google Scholar] [CrossRef]
- Bogert, G.A.; Chen, Y.C. Low-loss Y-branch power dividers. Electron. Lett. 1989, 25, 1712. [Google Scholar] [CrossRef]
- Koai, K.T.; Liu, P. Lo Modeling of Ti:LiNb03 Waveguide Devices: Part II-S-Shaped Channel Waveguide Bends. J. Light. Technol. 1989, 7, 1016–1022. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, C.; Zhao, Z. Design and Application of Integrated Optics Sensor for Measurement of Intense Pulsed Electric Field. J. Light. Technol. 2019, 37, 1440–1448. [Google Scholar] [CrossRef]
Structure Name | Length | Width | Thickness | |||
---|---|---|---|---|---|---|
Symbol | Value (mm) | Symbol | Value (mm) | Symbol | Value (mm) | |
LN substrate | LLN | 50 | WLN | 5 | TLN | 1 |
Electrode | Lel | 5 | Wel | 2 × 10−2 | Tel | 10−3 |
Tapered antenna | La | 2 | Wa | 1 | Ta | 10−3 |
Silica buffer layer | Ls | 50 | Ws | 5 | Ts | 4 × 10−7 |
package | Lpa | 78 | Wpa | 18 | Hpa | 7.5 |
LN OWG | Lwg | 50 | Wwg | 6 × 10−3 | Swg | 4 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Li, Y.; Zhang, J. Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna. Sensors 2021, 21, 3672. https://doi.org/10.3390/s21113672
Lu H, Li Y, Zhang J. Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna. Sensors. 2021; 21(11):3672. https://doi.org/10.3390/s21113672
Chicago/Turabian StyleLu, Haiying, Yingna Li, and Jiahong Zhang. 2021. "Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna" Sensors 21, no. 11: 3672. https://doi.org/10.3390/s21113672
APA StyleLu, H., Li, Y., & Zhang, J. (2021). Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna. Sensors, 21(11), 3672. https://doi.org/10.3390/s21113672