A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer
<p>Probabilistic neural network structure diagram.</p> "> Figure 2
<p>The diagram of the proposed ISSA-based PNN for fault diagnostics.</p> "> Figure 3
<p>The implemented framework of the power transformer fault diagnosis.</p> "> Figure 4
<p>The Dissolved gas data distribution of three-ratio for four fault types. (<b>a</b>–<b>d</b>), in the order of low temperature overheating (<150 ℃), low temperature overheating (150–300 ℃), partial discharge, and arc discharge.</p> "> Figure 5
<p>The classification results of different methods.</p> "> Figure 5 Cont.
<p>The classification results of different methods.</p> "> Figure 6
<p>Confusion matrix for different methods.</p> "> Figure 7
<p>The fitness value curve of different optimization methods.</p> ">
Abstract
:1. Introduction
2. The Proposed Method
2.1. Salp Swarm Algorithm
2.2. The Sine and Cosine Algorithm
2.3. Improved Salp Swarm Algorithm
Algorithm 1 Improved salp swarm algorithm. |
|
2.4. Probabilistic Neural Network
2.5. The Proposed ISSA-PNN Model
- Step 1: The pre-processed DGA data are input into PNN randomly, and the parameters are initialized.
- Step 2: The initial parameters of ISSA are set: population size N; dimension d; and the maximum number of iterations T. Moreover, the population position of ISSA is initialized by Equation (1), and each salp individual represents a set of smoothing factors .
- Step 3: The salp group’s fitness values within the population were calculated and ranked. In this paper, the mean square error is set as the fitness function, as shown in Equation (14).
- Step 4: The one with the best adaptation is considered as the current food position. Among the remaining salps, the salps with the top half of adaptation are considered as the leader, and the rest of the salps are considered as followers.
- Step 8: If the current number of iterations reaches the maximum number of iterations, then proceed to the next step—otherwise, return to Step 5.
- Step 9: Input ISSA optimized smoothing factor into PNN to obtain a better performance PNN model and the input test set data into PNN to obtain the best diagnostic results.
3. Implementation and Experiment Setup
3.1. Model Implementation
3.2. Data Collection and Pre-Processing
3.3. Performance Evaluation
4. The Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
AD | Arc discharge |
BA | Bat algorithm |
BP | Back-propagation |
BPNN | Back-propagation neural network |
CS | Cuckoo search |
CVA | Common vector approach |
D | Disruption operator |
DADDNN | Dynamic Adam and dropout-based deep neural network |
DBN | Deep belief network |
DGA | Dissolved gas analysis |
GA | Genetic algorithm |
GWO | Gray wolf optimization |
IEC | International electrotechnical commission |
ISSA | Improved salp swarm algorithm |
KNN | K-nearest neighbor |
LT | Low temperature and overheating |
MLP | Multi-layer perceptron |
MSE | Mean square error |
MVO | Multi-verse optimizer |
PD | Partial discharge |
PNN | Probabilistic neural network |
PSC | Power supply companies |
PSO | Particle swarm optimization |
SCA | Sine cosine algorithm; |
SD | Standard deviation |
SOA | Seagull optimization algorithm |
SSA | Salp swarm algorithm |
SVM | Support vector machine |
Smoothing factor |
References
- Faiz, J.; Soleimani, M. Assessment of computational intelligence and conventional dissolved gas analysis methods for transformer fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1798–1806. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Li, C.; Yang, R.; Su, Q. Reliability assessment of the fault diagnosis methodologies for transformers and a new diagnostic scheme based on fault info integration. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2292–2298. [Google Scholar] [CrossRef]
- Xiang, C.; Huang, Z.; Li, J.; Zhou, Q.; Yao, W. Graphic approaches for faults diagnosis for Camellia insulating liquid filled transformers based on dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1897–1903. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, L.; Tang, H.; Wang, D.; Cui, Y. Numerical and experimental validation of variation of power transformers’ thermal time constants with load factor. Appl. Therm. Eng. 2017, 126, 939–948. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Wang, L.; Guo, L.; Liao, W. Modified expression of moisture diffusion factor for non-oil-immersed insulation paper. IEEE Access 2019, 7, 41315–41323. [Google Scholar] [CrossRef]
- Bagheri, M.; Naderi, M.S.; Blackburn, T. Advanced transformer winding deformation diagnosis: Moving from off-line to on-line. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1860–1870. [Google Scholar] [CrossRef]
- Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [Google Scholar] [CrossRef]
- Sun, H.C.; Huang, Y.C.; Huang, C.M. A review of dissolved gas analysis in power transformers. Energy Procedia 2012, 14, 1220–1225. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; He, Y.; Li, B.; Shi, T. Transformer fault diagnosis using self-powered RFID sensor and deep learning approach. IEEE Sens. J. 2018, 18, 6399–6411. [Google Scholar] [CrossRef]
- Li, A.; Yang, X.; Dong, H.; Xie, Z.; Yang, C. Machine learning-based sensor data modeling methods for power transformer PHM. Sensors 2018, 18, 4430. [Google Scholar] [CrossRef] [Green Version]
- Souahlia, S.; Bacha, K.; Chaari, A. MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA. Int. J. Electr. Power Energy Syst. 2012, 43, 1346–1353. [Google Scholar] [CrossRef]
- Taha, I.B.; Hoballah, A.; Ghoneim, S.S. Optimal ratio limits of rogers’ four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 222–230. [Google Scholar] [CrossRef]
- Hung, C.P.; Wang, M.H. Diagnosis of incipient faults in power transformers using CMAC neural network approach. Electr. Power Syst. Res. 2004, 71, 235–244. [Google Scholar] [CrossRef]
- Duval, M.; DePabla, A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr. Insul. Mag. 2001, 17, 31–41. [Google Scholar] [CrossRef]
- Irungu, G.; Akumu, A.; Munda, J. A new fault diagnostic technique in oil-filled electrical equipment; the dual of Duval triangle. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3405–3410. [Google Scholar] [CrossRef]
- Morais, D.R.; Rolim, J.G. A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil. IEEE Trans. Power Deliv. 2006, 21, 673–680. [Google Scholar] [CrossRef]
- Yang, M.T.; Hu, L.S. Intelligent fault types diagnostic system for dissolved gas analysis of oil-immersed power transformer. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2317–2324. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, R.; Chen, M.; Wang, W.; Zhang, C. Dynamic fault prediction of power transformers based on hidden Markov model of dissolved gases analysis. IEEE Trans. Power Deliv. 2019, 34, 1393–1400. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, K.; Wang, J.; Zhou, T.; Zhang, Y. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1198–1206. [Google Scholar] [CrossRef]
- Benmahamed, Y.; Teguar, M.; Boubakeur, A. Application of SVM and KNN to Duval Pentagon 1 for transformer oil diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3443–3451. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Yang, Z.X.; Cui, Y.; Wang, L.; Jiang, J.; Guo, L. A new testing method for the dielectric response of oil-immersed transformer. IEEE Trans. Ind. Electron. 2019, 67, 10833–10843. [Google Scholar] [CrossRef]
- Kirkbas, A.; Demircali, A.; Koroglu, S.; Kizilkaya, A. Fault diagnosis of oil-immersed power transformers using common vector approach. Electr. Power Syst. Res. 2020, 184, 106346. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, R.; Zhang, C.; Chen, M.; Li, X.; Ma, G. Dynamic Fault Prediction of Power Transformers Based on Lasso Regression and Change Point Detection by Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 2130–2137. [Google Scholar] [CrossRef]
- Ghoneim, S.S.; Taha, I.B.; Elkalashy, N.I. Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1838–1845. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Tian, Y. Research on Transformer Fault Diagnosis Method based on GWO Optimized Hybrid Kernel Extreme Learning Machine. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Dai, J.; Song, H.; Sheng, G.; Jiang, X. Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2828–2835. [Google Scholar] [CrossRef]
- Ou, M.; Wei, H.; Zhang, Y.; Tan, J. A dynamic adam based deep neural network for fault diagnosis of oil-immersed power transformers. Energies 2019, 12, 995. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, W.; Li, A.; Yang, C.; Xie, Z.; Dong, H. BA-PNN-based methods for power transformer fault diagnosis. Adv. Eng. Inform. 2019, 39, 178–185. [Google Scholar] [CrossRef]
- Seshadrinath, J.; Singh, B.; Panigrahi, B.K. Incipient interturn fault diagnosis in induction machines using an analytic wavelet-based optimized Bayesian inference. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 990–1001. [Google Scholar] [CrossRef]
- Kusy, M.; Zajdel, R. Application of reinforcement learning algorithms for the adaptive computation of the smoothing parameter for probabilistic neural network. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 2163–2175. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Neggaz, N.; Ewees, A.A.; Abd Elaziz, M.; Mafarja, M. Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 2020, 145, 113103. [Google Scholar] [CrossRef]
- Liu, H.; Ding, G.; Wang, B. Bare-bones particle swarm optimization with disruption operator. Appl. Math. Comput. 2014, 238, 106–122. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Li, A.; Yang, C. A Hybrid machine-learning method for oil-immersed power transformer fault diagnosis. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 501–507. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Deng, Y.; Li, A. An Inspired Machine-Learning Algorithm with a Hybrid Whale Optimization for Power Transformer PHM. Energies 2020, 13, 3143. [Google Scholar] [CrossRef]
Fault Type | Dissolved Gas (µL/L) | Sources | ||||
---|---|---|---|---|---|---|
CH | CH | CH | CH | TH | ||
LT (<150 ℃) | 83 | 53 | 13 | 1.2 | 150.2 | Jiujiang PSC |
LT (150–300 ℃) | 6.5 | 98 | 16 | 1.5 | 122 | Fuzhou PSC |
LT (150–300 ℃) | 193 | 191 | 28 | 16 | 428 | Yingtan PSC |
LT (150–300 ℃) | 12 | 46 | 11 | 1.8 | 70.8 | Nanchang PSC |
LT (150–300 ℃) | 3.5 | 31 | 8.2 | 1 | 43.7 | Yichun PSC |
AD | 61 | 307 | 105 | 6 | 479 | Yingtan PSC |
Fault Type | LT (<150 ℃) | LT (150–300 ℃) | PD | AD |
---|---|---|---|---|
Coding format | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | |
0 | 0 | 1 | 0 | |
0 | 0 | 0 | 1 |
Dissolved Gas (µL/L) | Fault Type | ||
---|---|---|---|
CH/CH | CH/H | CH/CH | |
0.05172 | 0.85455 | 0.04839 | LT (<150 ℃) |
0 | 0.17529 | 0 | LT (<150 ℃) |
0.0625 | 0.15517 | 0.1 | LT (<150 ℃) |
0.01899 | 1.21828 | 0.00885 | LT (150–300 ℃) |
0.01613 | 1.125 | 0.01389 | LT (150–300 ℃) |
0.01667 | 1.08108 | 0.01563 | LT (150–300 ℃) |
0.05556 | 0.07524 | 0.05882 | PD |
0 | 0.07059 | 0 | PD |
0.06667 | 0.06754 | 0.21910 | PD |
0.01613 | 1.12500 | 0.01389 | PD |
0.01667 | 1.08108 | 0.01563 | PD |
0.01786 | 1.23188 | 0.01923 | PD |
0.375 | 0.45882 | 0.75 | AD |
0.4 | 0.89361 | 0.28571 | AD |
0.8 | 0.33928 | 1 | AD |
0.25 | 0.32323 | 0.33333 | AD |
0.14844 | 0.07836 | 0.14394 | AD |
Methods | Parameters Settings |
---|---|
PSO-PNN | c1 = c2 = 1.49445 |
SOA-PNN | NP = 10, T = 50 |
BA-PNN | NP = 20, A = 0.5, r = 0.5 |
MVO-PNN | NP = 10, T = 50 |
SSA-PNN | NP = 6, T = 50 |
ISSA-PNN | NP = 3, T = 10, = 0.5 |
BA-BP | NP = 20, A = 0.5, r = 0.5 |
CS-BP | NP = 20, Pa = 0.25 |
GA-BP | NP = 20, Pm = 0.01, Px = 0.7 |
Actual Class | Predicted Class | |
---|---|---|
Positive | Negative | |
Positive | True positive (TP) | False negative (FN) |
Negative | False positive (FP) | True negative (TN) |
Fault Type | Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|
ISSA-PNN | SSA-PNN | MVO-PNN | BA-PNN | SOA-PNN | PSO-PNN | PNN | |
LT (<150 ℃) | 98.59 | 100.00 | 98.59 | 98.59 | 98.59 | 98.59 | 95.77 |
LT (150–300 ℃) | 100.00 | 100.00 | 100.00 | 100.00 | 84.62 | 84.62 | 61.54 |
PD | 100.00 | 100.00 | 100.00 | 87.50 | 100.00 | 100.00 | 100.00 |
AD | 100.00 | 89.47 | 89.47 | 100.00 | 100.00 | 94.74 | 89.47 |
Average | 99.65 | 97.37 | 97.02 | 96.52 | 95.80 | 94.49 | 86.70 |
Fault Type | Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|
ISSA-PNN | BA-BP | CS-BP | GA-BP | MLP | SVM | IEC | |
LT (<150 ℃) | 98.59 | 99.06 | 94.34 | 99.06 | 91.55 | 84.51 | 97.17 |
LT (150–300 ℃) | 100.00 | 92.31 | 100.00 | 92.31 | 100.00 | 92.31 | 100.00 |
PD | 100.00 | 100.00 | 100.00 | 100.00 | 62.50 | 75.00 | 7.14 |
AD | 100.00 | 95.45 | 90.91 | 81.82 | 78.95 | 68.42 | 100.00 |
Average | 99.65 | 96.71 | 96.31 | 93.30 | 83.25 | 80.06 | 76.08 |
Fault Type | F1-Score (%) | ||||||
---|---|---|---|---|---|---|---|
ISSA-PNN | SSA-PNN | MVO-PNN | BA-PNN | SOA-PNN | PSO-PNN | PNN | |
LT (<150 ℃) | 99.29 | 98.61 | 98.59 | 98.61 | 97.90 | 97.22 | 93.79 |
LT (150–300 ℃) | 100.00 | 100.00 | 100.00 | 100.00 | 91.67 | 91.67 | 76.19 |
PD | 100.00 | 100.00 | 94.12 | 93.33 | 100.00 | 100.00 | 88.89 |
AD | 97.44 | 94.44 | 91.89 | 97.44 | 97.44 | 94.74 | 89.47 |
Marco F1-score | 99.18 | 98.26 | 96.15 | 97.35 | 96.75 | 95.91 | 87.09 |
Methods | MSE of Training | MSE of Test |
---|---|---|
ISSA-PNN | 0.00000 | 0.08108 |
SOA-PNN | 0.00901 | 0.10910 |
BA-PNN | 0.00901 | 0.11712 |
MVO-PNN | 0.00225 | 0.17117 |
SSA-PNN | 0.00901 | 0.16216 |
PSO-PNN | 0.02928 | 0.18018 |
BA-BP | 0.02500 | 0.13100 |
CS-BP | 0.00750 | 0.15480 |
GA-BP | 0.00500 | 0.19030 |
PNN | 0.03703 | 0.33333 |
MLP | 0.04277 | 0.38013 |
SVM | 0.04344 | 0.41231 |
IEC | 0.05625 | 0.46770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Yang, X.; Zhou, Y.; Yang, L. A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer. Sensors 2021, 21, 3623. https://doi.org/10.3390/s21113623
Tao L, Yang X, Zhou Y, Yang L. A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer. Sensors. 2021; 21(11):3623. https://doi.org/10.3390/s21113623
Chicago/Turabian StyleTao, Lingyu, Xiaohui Yang, Yichen Zhou, and Li Yang. 2021. "A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer" Sensors 21, no. 11: 3623. https://doi.org/10.3390/s21113623
APA StyleTao, L., Yang, X., Zhou, Y., & Yang, L. (2021). A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer. Sensors, 21(11), 3623. https://doi.org/10.3390/s21113623