Compact Bandwidth Enhanced Cavity-Backed Magneto-Electric Dipole Antenna with Outer Γ-Shaped Probe for GNSS Bands
<p>Cavity-backed conventional ME dipole antenna (<b>left</b>) and original proposed structure (<b>right</b>).</p> "> Figure 2
<p>Structure of the proposed antenna, top view (<b>a</b>), side view of the structure (<b>b</b>), and 3D view of the probe (<b>c</b>).</p> "> Figure 3
<p>Comparison of reflection coefficient <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> for structures 1 and 2.</p> "> Figure 4
<p>Input impedance <math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> of structure 2 versus frequency, real part in continuous line, and imaginary part in dashed line.</p> "> Figure 5
<p>Current distribution on the antenna at resonance frequencies.</p> "> Figure 6
<p>Input realized broadside gain (<b>a</b>) and 3 dB beamwidth (<b>b</b>).</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> vs. H.</p> "> Figure 8
<p><math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 9
<p><math display="inline"><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> vs. c.</p> "> Figure 10
<p>Photograph of the manufactured antenna (<b>left</b>) and radiating measurements (<b>right</b>).</p> "> Figure 11
<p>Simulated and measured <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and broadside realized gain (<b>b</b>).</p> "> Figure 12
<p>Simulated and measured normalized radiation pattern in E and H planes at extrema GNSS frequencies.</p> ">
Abstract
:1. Introduction
2. Outer Probe Excitation for BW Enhancement
3. Antenna Design and Analysis
3.1. Geometry and Comparison with Conventional ME Antenna
3.2. Analysis of Structure 2
3.3. Numerical Radiation Characteristics of Structure 2
3.4. Parametric Analysis
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathak, V.; Thornwall, S.; Krier, M.; Rowson, S.; Poilasne, G.; Desclos, L. Mobile handset system performance comparison of a linearly polarized GPS internal antenna with a circularly polarized antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003; Volume 3, pp. 666–669. [Google Scholar] [CrossRef]
- Serra, A.A.; Nepa, P.; Manara, G.; Massini, R. A Low-Profile Linearly Polarized 3D PIFA for Handheld GPS Terminals. IEEE Trans. Antennas Propag. 2010, 58, 1060–1066. [Google Scholar] [CrossRef]
- Luk, K.-M.; Wong, H. A New Wideband Unidirectional Antenna Element. Int. J. Microw. Opt. Technol. 2006, 1, 35–44. [Google Scholar]
- An, W.X.; Lau, K.L.; Li, S.F.; Xue, Q. Wideband E-shaped dipole antenna with staircase-shaped feeding strip. Electron. Lett. 2010, 46, 1583–1584. [Google Scholar] [CrossRef]
- Tao, J.; Feng, Q.; Liu, T. Dual-Wideband Magnetoelectric Dipole Antenna with Director Loaded. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1885–1889. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, J.-Q.; Chen, L.-L.; Li, B.-M. Bandwidth-Enhanced Cavity-Backed Magneto-Electric Dipole Antenna. IEEE Access 2018, 6, 62482–62489. [Google Scholar] [CrossRef]
- Zeng, J.; Luk, K.-M. A Simple Wideband Magnetoelectric Dipole Antenna with a Defected Ground Structure. Antennas Wirel. Propag. Lett. 2018, 17, 1497–1500. [Google Scholar] [CrossRef]
- Ge, L.; Luk, K.M. A Magneto-Electric Dipole Antenna with Low-Profile and Simple Structure. Antennas Wirel. Propag. Lett. 2013, 12, 140–142. [Google Scholar] [CrossRef]
- Ding, C.; Luk, K.-M. Low-Profile Magneto-Electric Dipole Antenna. Antennas Wirel. Propag. Lett. 2016, 15, 1642–1644. [Google Scholar] [CrossRef]
- Li, M.; Luk, K.-M.; Ge, L.; Zhang, K. Miniaturization of Magnetoelectric Dipole Antenna by Using Metamaterial Loading. IEEE Trans. Antennas Propag. 2016, 64, 4914–4918. [Google Scholar] [CrossRef]
- Zavosh, F.; Aberle, J.T. Improving the performance of microstrip-patch antennas. IEEE Antennas Propag. Mag. 1996, 38, 7–12. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L.; Zeb, B.A. Single-Dielectric Wideband Partially Reflecting Surface With Variable Reflection Components for Realization of a Compact High-Gain Resonant Cavity Antenna. IEEE Trans. Antennas Propag. 2019, 67, 1916–1921. [Google Scholar] [CrossRef]
- Martinis, M.; Mahdjoubi, K.; Sauleau, R.; Collardey, S.; Bernard, L. Bandwidth Behavior and Improvement of Miniature Cavity Antennas With Broadside Radiation Pattern Using a Metasurface. IEEE Trans. Antennas Propag. 2015, 63, 1899–1908. [Google Scholar] [CrossRef]
- Saghati, A.P.; Saghati, A.P.; Entesari, K. An Ultra-Miniature SIW Cavity-Backed Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 313–316. [Google Scholar] [CrossRef]
- Ge, L.; Luk, K.M. A Low-Profile Magneto-Electric Dipole Antenna. IEEE Trans. Antennas Propagat. 2012, 60, 1684–1689. [Google Scholar] [CrossRef]
- Neetu; Pandey, G.P.; Tiwari, V.N.; Marwah, S.S. A novel ultra-wide band magneto-electric dipole antenna with cavity reflector. PIER C 2016, 63, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, A.; Liu, J.; Liu, Q.H. Cavity-backed wideband magneto-electric antenna for through-the-wall imaging radar applications. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
- De Cos, M.E.; Las-Heras, F. Polypropylene-Based Dual-Band CPW-Fed Monopole Antenna. IEEE Antennas Propag. Mag. 2013, 55, 264–273. [Google Scholar] [CrossRef]
- Ansys HFSS Home Page. Available online: https://www.ansys.com/fr-fr/products/electronics/ansys-hfss (accessed on 15 February 2021).
- Lalbakhsh, A.; Alizadeh, S.M.; Ghaderi, A.; Golestanifar, A.; Mohamadzade, B.; Jamshidi, M.; Mandal, K.; Mohyuddin, W. A Design of a Dual-Band Bandpass Filter Based on Modal Analysis for Modern Communication Systems. Electronics 2020, 9, 1770. [Google Scholar] [CrossRef]
Structures | 1 | 2 | Structures | 1 | 2 | ||
---|---|---|---|---|---|---|---|
Parameters | Value (mm) | Parameters | Value (mm) | ||||
90 | 3 | −4 | |||||
40 | 12 | 15.5 | |||||
19 | 22 | 33 | |||||
50 | 6.75 | ||||||
22 | 4.5 | 0.6 | |||||
- | 8.75 | - | 17.5 | ||||
- | 1.6 | - | - | - |
Param. | Var. | 1st res. | 2nd res. | 3rd res. | |||
---|---|---|---|---|---|---|---|
- | - | Freq. | Ampl | Freq. | Ampl | Freq. | Ampl |
+ | + | + | |||||
++ | = | = | = | ||||
= | + | ||||||
= | ++ | = | ++ | ||||
a | = | ++ | = | = | = | ||
b | = | = | ++ | ||||
c | = | = | = | = |
3 dB Beamwidth | FTBR | X-Pol | Real. Gain | |
---|---|---|---|---|
Sim. | 92° | >10.9 dBi | 54 dB | 5.2 |
Meas. | 89° | >9.1 dBi | 32.8 dB | 5.1 |
Reference. | Dimensions (λc) | Volume Compared to [4] | Impedance Bandwidth | Minimum HPBW | Max X-Pol Level |
---|---|---|---|---|---|
4 | 0.93 × 1.22 × 0.36 | 100% | 88% | 55° | −20 dB |
13 | 0.967 × 0.967 × 0.173 | 39.6% | 54.8% | 30° | −20 dB |
14 | 1.6 × 1.18 × 0.34 | 157.2% | 68.8% | 60° | −30 dB |
15 | 0.86 × 0.76 × 0.23 | 36.8% | 76% | 60° | n/a |
This work | 0.41 × 0.41 × 0.18 | 7.4% | 40.5% | 89° | −32.8 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Causse, A.; Rodriguez, K.; Bernard, L.; Sharaiha, A.; Collardey, S. Compact Bandwidth Enhanced Cavity-Backed Magneto-Electric Dipole Antenna with Outer Γ-Shaped Probe for GNSS Bands. Sensors 2021, 21, 3599. https://doi.org/10.3390/s21113599
Causse A, Rodriguez K, Bernard L, Sharaiha A, Collardey S. Compact Bandwidth Enhanced Cavity-Backed Magneto-Electric Dipole Antenna with Outer Γ-Shaped Probe for GNSS Bands. Sensors. 2021; 21(11):3599. https://doi.org/10.3390/s21113599
Chicago/Turabian StyleCausse, Alexandre, Kevin Rodriguez, Loïc Bernard, Ala Sharaiha, and Sylvain Collardey. 2021. "Compact Bandwidth Enhanced Cavity-Backed Magneto-Electric Dipole Antenna with Outer Γ-Shaped Probe for GNSS Bands" Sensors 21, no. 11: 3599. https://doi.org/10.3390/s21113599
APA StyleCausse, A., Rodriguez, K., Bernard, L., Sharaiha, A., & Collardey, S. (2021). Compact Bandwidth Enhanced Cavity-Backed Magneto-Electric Dipole Antenna with Outer Γ-Shaped Probe for GNSS Bands. Sensors, 21(11), 3599. https://doi.org/10.3390/s21113599