Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications
<p>Typical multiband rectenna block diagram.</p> "> Figure 2
<p>Geometry of the proposed modified E-shaped patch antenna: (<b>a</b>) top view (the decision variables of the optimization process are indicated, substrate and ground plane are omitted in this view), (<b>b</b>) expanded perspective view.</p> "> Figure 3
<p>Proposed configuration of the RF-to-DC rectifier (<b>a</b>) Greinacher voltage-doubler design and (<b>b</b>) Impedance matching network design.</p> "> Figure 4
<p>Photograph of the fabricated rectenna prototype (the ground plane is placed on the backside of the rectenna and it is omitted in the photos) (<b>a</b>) Proposed antenna and (<b>b</b>) Proposed rectifier.</p> "> Figure 5
<p>Photograph of measurement setup that was used to perform the experimental evaluation of the fabricated rectenna (<b>a</b>) Measurement setup for the proposed antenna and (<b>b</b>) Measurement setup for the proposed rectifier.</p> "> Figure 6
<p>Reflection coefficient (<math display="inline"><semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics></math> magnitude) versus frequency of the proposed modified E-shaped patch antenna (Computed results are displayed in blue solid line, whereas measured results are displayed in dark green dash line. The red dash line represents the −10 dB limit).</p> "> Figure 7
<p>Normalized radiation pattern plots in the main planes (XZ, YZ) of the modified E-shaped patch antenna (Computed results are displayed in blue solid lines, whereas measured results are displayed in orange circular markers. Radial axis is expressed in dB.) (<b>a</b>) freq = 866.4 MHz (XZ plane), (<b>b</b>) freq = 1841 MHz (XZ plane), (<b>c</b>) freq = 1957 MHz (XZ plane), (<b>d</b>) freq = 866.4 MHz (YZ plane), (<b>e</b>) freq = 1841 MHz (YZ plane), and (<b>f</b>) freq = 1957 MHz (YZ plane).</p> "> Figure 8
<p>Realized gain plots (computed results) of the modified E-shaped patch antenna (color scale in dB) (<b>a</b>) freq = 866.4 MHz, (<b>b</b>) freq = 1841 MHz, and (<b>c</b>) freq = 1957 MHz.</p> "> Figure 9
<p>Reflection coefficient (<math display="inline"><semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics></math> magnitude) versus frequency of the proposed RF-to-DC rectifier at a reference level of RF input power equal to 0 dBm (Computed results are displayed in blue solid line, whereas measured results are displayed in dark green dash line. The red dash line represents the −10 dB limit).</p> "> Figure 10
<p>(<b>a</b>) Computed RF-to-DC power conversion efficiency versus the output load resistance for various levels of the <math display="inline"><semantics> <msub> <mi>P</mi> <mi>in</mi> </msub> </semantics></math> and (<b>b</b>) Total computed RF-to-DC power conversion efficiency (triple-tone) and DC output versus <math display="inline"><semantics> <msub> <mi>P</mi> <mi>in</mi> </msub> </semantics></math>.</p> "> Figure 11
<p>Efficiency versus RF input power level of the proposed RF-to-DC rectifier (Computed results are displayed in blue solid line, whereas measured results are displayed in dark green dash line) (<b>a</b>) freq = 866.4 MHz, (<b>b</b>) freq = 1841 MHz, and (<b>c</b>) freq = 1957 MHz.</p> ">
Abstract
:1. Introduction
- Use of the MS algorithm (MSA) to obtain an optimal solution for the antenna module of an electromagnetic radiation harvesting system.
- Performance improvement of the IMN based on a three-step process that includes the minimization of the reflection coefficient (stopping criterion of −20 dB), the minimization of the magnitude variations at the frequencies of operation over an RF input power range of 20 dB (−10 dBm to 10 dBm), and the maximization of the provided DC output voltage at the same range of RF input power.
2. Materials and Methods
2.1. Moth Search Algorithm Description
Algorithm 1 Pseudo-code of the Moth Search Algorithm. |
|
2.2. MSA Performance Evaluation
- Number of independent trials: 100
- Number of iterations: 1000
- Population size: 100
- Number of decision variables: 30
- Bounds of decision variables: [−10 10]
2.3. Triple-Band Single-Layer Rectenna
2.3.1. Antenna Design Procedure
- is the vector representing the solution (each value of the solution vector corresponds to the members of the moth population) of the proposed antenna geometry at each iteration,
- , , and are the values of the reflection coefficient at the solution frequencies, which fall into the desired frequency bands of LoRa, GSM-1800, and UMTS-2100,
- is the specific limit of the reflection coefficient whether a current solution of the optimization process is accepted or not ( = −10 dB), and
- is a very large number that is assigned to the current solution ( magnitude) of the optimization process ( = 1 × 1012).
- Total population number of moths : 50
- Number of sub-population : 25
- Number of sub-population : 25
- Number of decision variables : 13
- Maximum number of generations : 1000
- Number of independent trials: 10
2.3.2. Proposed RF-to-DC Rectifier Design
2.3.3. Rectenna Prototype Fabrication
3. Results and Discussion
3.1. Experimental Setup
- Signal Generator (© IFR Ltd. 1999), Model: IFR, Operating Frequency: 9 kHz to 2.51 GHz
- Antenna (© Keysight Technologies 2000–2021), Model: HP 11966E Double-Ridged Waveguide Horn Antenna EMCO No 3115, Operating Frequency: 1 GHz to 18 GHz (calibrated down to 750 MHz)
- Vector Network Analyzer (© 2020 Agilent Technologies, Inc.), Model: E5062A ENA-L RF Network Analyzer, Operating Frequency: 300 kHz to 3 GHz
- Spectrum Analyzer (© Keysight Technologies 2000–2021), Model: HP 8593EM EMC Analyzer, Operating Frequency: 9 kHz to 22 GHz
- Digital Multimeter (© Keysight Technologies 2000–2021), Model: U1242C RMS Digital Multimeter
3.2. Proposed Antenna Results
3.3. Proposed RF-to-DC Rectifier Results
3.4. Proposed Rectenna Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Test Functions
- Achkely Function: , where d denotes the number of dimensions, a = 20, b = 0.2, and c = 2
- Bukin Function No. 6:
- Levy No. 13 Function:
- Schaffer No. 2 Function:
- Shubert Function:
- Perm Function: , where d denotes the number of dimensions and is a constant number (default value is 10)
- Sphere Function: , where d denotes the number of dimensions
- Sum of Different Powers Function: , where d denotes the number of dimensions
- Booth Function:
- Hartmann 3D Function: , where , , and
References
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Ibrahim, H.H.; Singh, M.S.J.; Al-Bawri, S.S.; Islam, M.T. Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study. Sensors 2020, 20, 2772. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Niotaki, K.; Kim, S.; Jeong, S.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637. [Google Scholar] [CrossRef]
- Visser, H.J.; Vullers, R.J.M. RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements. Proc. IEEE 2013, 101, 1410–1423. [Google Scholar] [CrossRef]
- Sim, Z.W.; Shuttleworth, R.; Alexander, M.J.; Grieve, B.D. Compact Patch Antenna Design for Outdoor RF Energy Harvesting in Wireless Sensor Networks. Prog. Electromagn. Res. 2010, 105, 273–294. [Google Scholar] [CrossRef] [Green Version]
- Arrawatia, M.; Baghini, M.S.; Kumar, G. Differential Microstrip Antenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2015, 63, 1581–1588. [Google Scholar] [CrossRef]
- Georgiadis, A.; Andia, G.V.; Collado, A. Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 444–446. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Pierezan, J.; Mariani, V.C.; Coelho, L.S.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband Patch Antenna Design Using Nature-Inspired Optimization Method. IEEE Open J. Antennas Propag. 2020, 2, 151–162. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107. [Google Scholar] [CrossRef]
- Shen, S.; Chiu, C.; Murch, R.D. A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3071–3074. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Sarma, S.S.; Akhtar, M.J. Design of Triple Band Differential Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 2716–2726. [Google Scholar] [CrossRef]
- Palazzi, V.; Hester, J.; Bito, J.; Alimenti, F.; Kalialakis, C.; Collado, A.; Mezzanotte, P.; Georgiadis, A.; Roselli, L.; Tentzeris, M.M. A Novel Ultra-Lightweight Multiband Rectenna on Paper for RF Energy Harvesting in the Next Generation LTE Bands. IEEE Trans. Microw. Theory Tech. 2018, 66, 366–379. [Google Scholar] [CrossRef]
- Saravanan, M.; Priya, A. Design of Tri-Band Microstrip Patch Rectenna for Radio Frequency Energy Harvesting System. IETE J. Res. 2019. [Google Scholar] [CrossRef]
- Singh, N.; Kanaujia, B.K.; Beg, M.T.; Khan, T.; Kumar, S. A dual polarized multiband rectenna for RF energy harvesting. Int. J. Electron. Commun. 2018, 93, 123–131. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Chiu, C.; Murch, R. A Triple-Band High-Gain Multibeam Ambient RF Energy Harvesting System Utilizing Hybrid Combining. IEEE Trans. Ind. Electron. 2020, 67, 9215–9226. [Google Scholar] [CrossRef]
- Pham, B.L.; Pham, A. Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Vu, H.S.; Nguyen, N.; Ha-Van, N.; Seo, C.; Le, M.T. Multiband Ambient RF Energy Harvesting for Autonomous IoT Devices. IEEE Microw. Wirel. Components Lett. 2020, 30, 1189–1192. [Google Scholar] [CrossRef]
- Bakytbekov, A.; Shamim, A. Additively Manufactured Triple-Band Fractal Antenna-on-Package for Ambient RF Energy Harvesting. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Liu, J.; Zhang, X.Y. Compact Triple-Band Rectifier for Ambient RF Energy Harvesting Application. IEEE Access 2018, 6, 19018–19024. [Google Scholar] [CrossRef]
- Ahmad, W.; Qureshi, M.I.; Khan, W.T. A highly efficient tri band (GSM1800, WiFi2400 and WiFi5000) rectifier for various radio frequency harvesting applications. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 2039–2044. [Google Scholar] [CrossRef]
- Tafekirt, H.; Pelegri-Sebastia, J.; Bouajaj, A.; Reda, B.M. A Sensitive Triple-Band Rectifier for Energy Harvesting Applications. IEEE Access 2020, 8, 73659–73664. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Guo, Y. High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Wang, G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018, 10, 151–164. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Koulouridis, S.; Rocca, P.; Goudos, S.K. Modified Patch Antenna Design Using Moth Search Algorithm for RF Energy Harvesting Applications. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, M.S.; Boursianis, A.D.; Skoufa, A.; Volos, C.K.; Stouboulos, I.N.; Nikolaidis, S.; Goudos, S.K. Dual-Band RF-to-DC Rectifier with High Efficiency for RF Energy Harvesting Applications. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jabbar, H.; Song, Y.S.; Jeong, T.T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Consum. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Broadcom Limited. HSMS-2850, Surface Mount Zero Bias Schottky Detector Diodes. Available online: https://docs.broadcom.com/doc/AV02-1377EN (accessed on 20 December 2020).
- Shen, S.; Chiu, C.; Murch, R.D. Multiport Pixel Rectenna for Ambient RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 644–656. [Google Scholar] [CrossRef]
MSA | PSO | DE | BBO | GWO | ABC | TLBO | ACO | |
---|---|---|---|---|---|---|---|---|
7.957 × 100 | 3.023 × 10−1 | 1.102 × 100 | 2.799 × 10−1 | 1.403 × 10−1 | 3.516 × 100 | 8.696 × 10−2 | 9.439 × 100 | |
1.107 × 10−1 | 2.421 × 10−1 | 8.639 × 10−1 | 1.600 × 10−1 | 3.065 × 10−1 | 2.484 × 10−1 | 1.758 × 10−1 | 6.826 × 10−1 | |
0.000 × 100 | 1.995 × 10−3 | 1.138 × 10−2 | 2.556 × 10−3 | 3.209 × 10−3 | 9.227 × 10−4 | 2.136 × 10−3 | 8.850 × 10−3 | |
8.600 × 10−5 | 9.499 × 10−6 | 1.414 × 10−4 | 6.298 × 10−5 | 2.577 × 10−5 | 1.100 × 10−5 | 1.815 × 10−5 | 1.258 × 10−4 | |
−1.867 × 102 | −1.865 × 102 | −1.858 × 102 | −1.865 × 102 | −1.862 × 102 | −1.865 × 102 | −1.865 × 102 | −1.848 × 102 | |
4.651 × 1049 | 8.094 × 1050 | 6.102 × 1056 | 4.509 × 1054 | 6.080 × 1056 | 2.239 × 1057 | 5.161 × 1051 | 2.283 × 1059 | |
1.009 × 102 | 1.457 × 100 | 1.612 × 101 | 2.443 × 100 | 2.296 × 100 | 3.109 × 101 | 9.115 × 10−1 | 2.192 × 102 | |
1.844 × 1015 | 8.963 × 1015 | 3.317 × 1018 | 2.495 × 1017 | 8.900 × 1018 | 5.373 × 1017 | 7.460 × 1015 | 3.200 × 1019 | |
4.080 × 10−4 | 1.378 × 10−3 | 2.251 × 10−2 | 3.972 × 10−3 | 4.849 × 10−3 | 5.703 × 10−4 | 2.041 × 10−3 | 1.131 × 10−2 | |
−3.854 × 100 | −3.846 × 100 | −3.789 × 100 | −3.847 × 100 | −3.848 × 100 | −3.851 × 100 | −3.847 × 100 | −3.807 × 100 |
Algorithm | MSA | PSO | DE | BBO | GWO | ABC | TLBO | ACO |
---|---|---|---|---|---|---|---|---|
Friedman test | 2.7 | 3.2 | 6.9 | 4.0 | 4.8 | 4.1 | 2.9 | 7.5 |
Normalized Ranking | 1 | 3 | 7 | 4 | 6 | 5 | 2 | 8 |
80.29 | 103.41 | 44.76 | 11.45 | 41.71 | 11.03 | 64.70 | 10.96 | 11.58 | 12.20 | 56.60 | 85.70 | 68.71 |
4.9/46 | 3/33.7 | 3/45.6 | 3/33 | 1/3 | 20/15.8 | 3/23 | 1/13 | 22/19.8 |
Ref. | Substrate | Freq. Bands | Max. Gain | IMN | RF Input | PCE and |
---|---|---|---|---|---|---|
[14] | RT/ Duroid 5880 | GSM-900, GSM-1800, UMTS-2100 | 8.15 dBi | Shunted and radial stubs, lumped elements | −10 dBm | 40% & 0.447 V @925 MHz 31% & 0.394 V @1820 MHz 25% & 0.354 V @2170 MHz |
[15] | FR-4 | UMTS-2100, Wi-Fi 2.4 GHz, WiMAX | 9.2 dBi | Meander line, open and radial stubs | −13.5 dBm | 52% & 0.160 V @2.0 GHz 25% & 0.111 V @2.5 GHz 14% & 0.083 V @3.5 GHz |
[16] | paper | LTE (0.79–0.96 GHz, 1.71–2.17 GHz, 2.5–2.69 GHz) | 6.0 dBi | Shunted and radial stubs, lumped elements | −10 dBm | 35% & 0.32 V @900 MHz 30% & 0.30 V @1800 MHz 28% & 0.29 V @2600 MHz |
[17] | FR-4 | Wi-Fi 2.4 GHz, Wi-Fi 5 GHz, C-band | 4.42 dBi | Shorted stubs | −10 dBm | 50% & 0.28 V @2.45 GHz 45% & 0.27 V @5.05 GHz 35% & 0.24 V @4.075 GHz |
[18] | FR-4 | C-band (5.42 GHz, 6.9 GHz, 7.61 GHz) | 7.3 dBi | Radial, shunted, and shorted stubs | 5 dBm | 14% & 1.152 V @5.42 GHz 15% & 1.193 V @6.90 GHz 42% & 1.996 V @7.61 GHz |
This work | FR-4 | LoRa, GSM-1800, UMTS-2100 | 4.3 dBi | Shunted and shorted stubs | −10 dBm 5 dBm | 20% & 0.529 V @866.4 MHz 13% & 0.427 V @1841 MHz 13% & 0.427 V @1957 MHz 50% & 4.71 V @866.4 MHz 26% & 3.39 V @1841 MHz 28% & 3.52 V @1957 MHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boursianis, A.D.; Papadopoulou, M.S.; Koulouridis, S.; Rocca, P.; Georgiadis, A.; Tentzeris, M.M.; Goudos, S.K. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors 2021, 21, 3460. https://doi.org/10.3390/s21103460
Boursianis AD, Papadopoulou MS, Koulouridis S, Rocca P, Georgiadis A, Tentzeris MM, Goudos SK. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors. 2021; 21(10):3460. https://doi.org/10.3390/s21103460
Chicago/Turabian StyleBoursianis, Achilles D., Maria S. Papadopoulou, Stavros Koulouridis, Paolo Rocca, Apostolos Georgiadis, Manos M. Tentzeris, and Sotirios K. Goudos. 2021. "Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications" Sensors 21, no. 10: 3460. https://doi.org/10.3390/s21103460
APA StyleBoursianis, A. D., Papadopoulou, M. S., Koulouridis, S., Rocca, P., Georgiadis, A., Tentzeris, M. M., & Goudos, S. K. (2021). Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors, 21(10), 3460. https://doi.org/10.3390/s21103460