A Scaling Law for SPAD Pixel Miniaturization
<p>Conceptual views of SPAD pixel scaling; (<b>a</b>) top-view layout examples of pixel miniaturization, (<b>b</b>) cross-section example of p+/NW SPAD, and (<b>c</b>) cross-section example of PW/deep-NW SPAD or p-i-n SPAD.</p> "> Figure 2
<p>The calculated FF as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for active-to-active distances <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> </semantics></math> = 3, 4, 5 μm.</p> "> Figure 3
<p>The calculated PDP as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>D</mi> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 50%, active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, and inactive radius <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math> = 0, 0.25, 0.5, and 1 μm.</p> "> Figure 4
<p>The calculated PDE as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>D</mi> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 50%, active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, and inactive radius <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math> = 0, 0.25, 0.5, and 1 μm.</p> "> Figure 5
<p>The calculated DCR as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 0.2, 0.5, 1, and 2 cps/μm<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>, active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm and inactive radius <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 0.5 μm.</p> "> Figure 6
<p>The calculated DCR density as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 0.2, 0.5, 1, and 2 cps/μm<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>, active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, and inactive radius <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 0.5 μm.</p> "> Figure 7
<p>The calculated afterpulsing probability as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 5 fF (dashed lines), and 30 fF (solid lines), active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>11</mn> </msup> </mrow> </semantics></math> F<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 0.5, 1, 2 μm.</p> "> Figure 8
<p>The calculated crosstalk probability as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 5 fF (dashed lines) and 30 fF (solid lines), active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, <math display="inline"><semantics> <mrow> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>4</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>12</mn> </msup> </mrow> </semantics></math> F<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 1 μm, <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math> = 0.5 μm, and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> </mrow> </semantics></math> 0.05, 0.1, and 0.2 μm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 9
<p>The calculated power consumption as a function of the SPAD pixel pitch <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 5 fF (dashed lines) and 30 fF (solid lines), active-to-active distance <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>−</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3 μm, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>B</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 20 V, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 3.3 V, and <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 0.5, 1, and 2 μm.</p> "> Figure 10
<p>The measured PDP trend from the literature fitted by the theoretical equation [<a href="#B40-sensors-21-03447" class="html-bibr">40</a>]. The measured and fitted data are shown as dots and a dashed line, respectively.</p> "> Figure 11
<p>The measured DCR trend from the literature fitted by the theoretical equation [<a href="#B40-sensors-21-03447" class="html-bibr">40</a>]. The measured and fitted data are shown as dots and a dashed line, respectively.</p> ">
Abstract
:1. Introduction
2. Scaling Law Analysis
2.1. Analysis Criteria
- a uniform square grid,
- a circular shape for the active area and inner/outer borders of the guard ring,
- a 3D-stacked configuration with full separation of the SPAD and pixel circuit into different wafers,
- an active-to-active distance unscaled with the SPAD pixel dimension, and
- the pixel pitch employed as a scaling parameter.
2.2. Formulation of Scaling Laws
2.2.1. Fill Factor
2.2.2. PDP and PDE
2.2.3. DCR
2.2.4. Afterpulsing Probability
2.2.5. Crosstalk Probability
2.2.6. Power Consumption
2.2.7. Timing Jitter
2.2.8. Summary of Scaling Law Analysis
3. Application to Experimental Results
Extraction of Model Parameters
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMOS | Complementary-metal-oxide-semiconductor |
DCR | Dark count rate |
DTI | Deep trench isolation |
FF | Fill factor |
PDE | Photon detection efficiency |
PDP | Photon detection probability |
QE | Quantum efficiency |
SPAD | Single-photon avalanche diode |
References
- Morimoto, K.; Ardelean, A.; Wu, M.-L.; Ulku, A.C.; Antolovic, I.M.; Bruschini, C.; Charbon, E. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 2020, 7, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Charbon, E. High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique. Opt. Express 2020, 28, 13068–13080. [Google Scholar] [CrossRef] [PubMed]
- Pavia, J.M.; Scandini, M.; Lindner, S.; Wolf, M.; Charbon, E. A 1 × 400 Backside-Illuminated SPAD Sensor with 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography. IEEE J. Solid-State Circuits 2015, 50, 2406–2418. [Google Scholar] [CrossRef]
- Al Abbas, T.; Dutton, N.A.W.; Almer, O.; Pellegrini, S.; Henrion, Y.; Henderson, R.K. Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-stacked CMOS technology. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Ximenes, A.R.; Padmanabhan, P.; Lee, M.-J.; Yamashita, Y.; Yaung, D.-N.; Charbon, E. A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE J. Solid-State Circuits 2019, 54, 3203–3214. [Google Scholar] [CrossRef]
- Henderson, R.K.; Johnston, N.; Hutchings, S.W.; Gyongy, I.; al Abbas, T.; Dutton, N.; Tyler, M.; Chan, S.; Leach, J. A 256 × 256 40 nm/90 nm CMOS 3D-Stacked 120 dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019. [Google Scholar]
- Kindt, W.J.; van Zeijl, H.W. Modelling and Fabrication of Geiger mode Avalanche Photodiodes. IEEE Trans. Nucl. Sci. 1998, 45, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Gulinatti, A.; Rech, I.; Assanelli, M.; Ghioni, M.; Cova, S. A physically based model for evaluating the photon detection efficiency and the temporal response of SPAD detectors. J. Mod. Opt. 2011, 58, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Pancheri, L.; Stoppa, D.; Betta, G.-F.D. Characterization and Modeling of Breakdown Probability in Sub-Micrometer CMOS SPADs. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 328–335. [Google Scholar] [CrossRef]
- You, Z.; Parmesan, L.; Pellegrini, S.; Henderson, R.K. 3 μm Pitch, 1 μm Active Diameter SPAD Arrays in 130nm CMOS Imaging Technology. In Proceedings of the 2017 International Image Sensor Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Maruyama, Y.; Blacksberg, J.; Charbon, E. A 1024 × 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration with Laser Raman Spectroscopy and LIBS. IEEE J. Solid-State Circuits 2014, 49, 179–189. [Google Scholar] [CrossRef]
- Niclass, C.; Matsubara, H.; Soga, M.; Ohta, M.; Ogawa, M.; Yamashita, T. A NIR-Sensitivity-Enhanced Single-Photon Avalanche Diode in 0.18 μm CMOS. In Proceedings of the 2015 International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015. [Google Scholar]
- Gyongy, I.; Calder, N.; Davies, A.; Dutton, N.A.W.; Dalgarno, P.; Duncan, R.; Rickman, C.; Henderson, R.K. 256 × 256, 100 kfps, 61% Fill-factor Time-resolved SPAD Image Sensor for Microscopy Application. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Gulinatti, A.; Ceccarelli, F.; Rech, I.; Ghioni, M. Silicon technologies for arrays of Single Photon Avalanche Diodes. Proc. SPIE 2016, 9858, 98580A. [Google Scholar]
- Veerappan, C. Single-Photon Avalanche Diodes for Cancer Diagnosis. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2016. [Google Scholar]
- Richardson, J.A.; Webster, E.A.G.; Grant, L.A.; Henderson, R.K. Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology. IEEE Trans. Electron Devices 2011, 58, 2028–2035. [Google Scholar] [CrossRef]
- Veerappan, C.; Charbon, E. A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology. IEEE Trans. Electron Devices 2015, 63, 65–71. [Google Scholar] [CrossRef]
- Pavia, J.M.; Wolf, M.; Charbon, E. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 2014, 22, 4202–4213. [Google Scholar] [CrossRef]
- Gyongy, I.; Davies, A.; Gallinet, B.; Dutton, N.A.W.; Duncan, R.; Rickman, C.; Henderson, R.K.; Dalgarno, P.A. Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy. Opt. Express 2018, 26, 2280–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charbon, E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130100. [Google Scholar] [CrossRef] [Green Version]
- Takai, I.; Matsubara, H.; Soga, M.; Ohta, M.; Ogawa, M.; Yamashita, T. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems. Sensors 2016, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- Tielert, R. Two-Dimensional Numerical Simulation of Impurity Redistribution in VLSI Processes. IEEE Trans. Electron Devices 1980, 27, 1479–1483. [Google Scholar] [CrossRef]
- Acerbi, F.; Paternoster, G.; Gola, A.; Zorzi, N.; Piemonte, C. Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 912, 309–314. [Google Scholar] [CrossRef]
- Gola, A. NUV-HD and NIR-HD SiPMs and Applications. In Proceedings of the International SPAD Sensor Workshop, Les Diablerets, Switzerland, 26–28 February 2018. [Google Scholar]
- Fishburn, M.W. Fundamentals of CMOS Single-Photon Avalanche Diodes. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2012. [Google Scholar]
- Teranishi, N. Dark current and white blemish in image sensors. In Proceedings of the 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 22–24 April 2013. [Google Scholar]
- Charbon, E. Status and Future Prospects of High Time Resolution Photon Counting Sensor Arrays. In Proceedings of the Topical Workshop on Electronics for Particle Physics, Lisbon, Portugal, 28 September–2 October 2015. [Google Scholar]
- Webster, E.A.G.; Richardson, J.A.; Grant, L.A.; Renshaw, D.; Henderson, R.K. A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology with 44% Photon Detection Efficiency at 690 nm. IEEE Electron Device Lett. 2012, 33, 694–696. [Google Scholar] [CrossRef]
- Lee, M.-J.; Sun, P.; Charbon, E. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device. Opt. Express 2015, 23, 13200–13209. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Pancheri, L.; Betta, G.-F.D.; Stoppa, D. Design and characterization of a p+/n-well SPAD array in 150 nm CMOS process. Opt. Express 2017, 25, 12765–12778. [Google Scholar] [CrossRef]
- Veerappan, C.; Charbon, E. A Substrate Isolated CMOS SPAD Enabling Wide Spectral Response and Low Electrical Crosstalk. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 299–305. [Google Scholar] [CrossRef]
- Unternährer, M.; Bessire, B.; Gasparini, L.; Stoppa, D.; Stefanov, A. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array. Opt. Express 2016, 24, 28829–28841. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, L.; Bessire, B.; Unternährer, M.; Stefanov, A.; Boiko, D.; Perenzoni, M.; Stoppa, D. SUPERTWIN: Towards 100 kpixel CMOS quantum image sensors for quantum optics applications. Proc. SPIE 2017, 10111, 101112L. [Google Scholar]
- Lubin, G.; Tenne, R.; Antolovic, I.M.; Charbon, E.; Bruschini, C.; Oron, D. Quantum correlation measurement with single photon avalanche diode arrays. arXiv 2019, arXiv:1910.01376. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, C.; Campbell, J.C.; Pan, Z.; Tashima, M.M. Reduce Afterpulsing of Single Photon Avalanche Diodes Using Passive Quenching with Active Reset. IEEE J. Quantum Electron. 2008, 44, 430–434. [Google Scholar] [CrossRef]
- Mönch, W. On the Physics of Avalanche Breakdown in Semiconducors. Phys. Status Solidi 1969, 36, 9–48. [Google Scholar] [CrossRef]
- Snyman, L.W.; Plessis, M.D.; Aharoni, H. Injection-Avalanche-Based n+pn Silicon Complementary Metal–Oxide–Semiconductor Light-Emitting Device (450–750 nm) with 2-Order-of-Magnitude Increase in Light Emission Intensity. Jpn. J. Appl. Phys. 2007, 46, 2474. [Google Scholar] [CrossRef]
- Rech, I.; Ingargiola, A.; Spinelli, R.; Labanca, I.; Marangoni, S.; Ghioni, M.; Cova, S. Optical crosstalk in single photon avalanche diode arrays: A new complete model. Opt. Express 2008, 16, 8381–8394. [Google Scholar] [CrossRef]
- Assanelli, M.; Ingargiola, A.; Rech, I.; Gulinatti, A.; Ghioni, M. Photon-Timing Jitter Dependence on Injection Position in Single-Photon Avalanche Diodes. IEEE J. Quantum Electron. 2011, 47, 151–159. [Google Scholar] [CrossRef]
- Malass, I.; Uhring, W.; le Normand, J.-P.; Dumas, N.; Dadouche, F. Evaluation of size influence on performance figures of a single photon avalanche diode fabricated in a 180 nm standard CMOS technology. Analog Integr. Circuits Signal Process. 2016, 89, 69–76. [Google Scholar] [CrossRef]
Characteristics | Equation |
---|---|
Fill factor (%) | |
PDP (%) | |
PDE (%) | |
DCR (cps) | |
DCR density (cps/μm) | |
Afterpulsing probability (%) | |
Crosstalk probability (%) | |
Power consumption (pJ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimoto, K.; Charbon, E. A Scaling Law for SPAD Pixel Miniaturization. Sensors 2021, 21, 3447. https://doi.org/10.3390/s21103447
Morimoto K, Charbon E. A Scaling Law for SPAD Pixel Miniaturization. Sensors. 2021; 21(10):3447. https://doi.org/10.3390/s21103447
Chicago/Turabian StyleMorimoto, Kazuhiro, and Edoardo Charbon. 2021. "A Scaling Law for SPAD Pixel Miniaturization" Sensors 21, no. 10: 3447. https://doi.org/10.3390/s21103447
APA StyleMorimoto, K., & Charbon, E. (2021). A Scaling Law for SPAD Pixel Miniaturization. Sensors, 21(10), 3447. https://doi.org/10.3390/s21103447