2.5D Flexible Wind Sensor Using Differential Plate Capacitors
<p>Schematic diagram of the proposed flexible wind sensor: (<b>a</b>) main view, (<b>b</b>) left view, (<b>c</b>) top view, (<b>d</b>) isometric view, and (<b>e</b>) hierarchical structure view.</p> "> Figure 2
<p>Schematic diagram of the four parallel plate capacitors.</p> "> Figure 3
<p>Simulated change in gap distances when the wind speed varied from 0 m/s to 25 m/s in the xy-plane with a fixed direction of 0°.</p> "> Figure 4
<p>Simulated change in gap distance when the wind direction changed from 0° to 360° in the xy-plane with a fixed wind speed of 12.7 m/s.</p> "> Figure 5
<p>Simulated change in gap distance when the wind speed changed from 0 m/s to 25 m/s in the <span class="html-italic">z</span>-axis.</p> "> Figure 6
<p>Fabrication process of the proposed flexible wind sensor.</p> "> Figure 7
<p>Photographs of (<b>a</b>) the windward pillar, (<b>b</b>) the upper electrode layer, (<b>c</b>) the support layer, (<b>d</b>) the lower electrode layer, and (<b>e</b>) the fabricated wind sensor.</p> "> Figure 8
<p>The setup for wind speed and direction measurement.</p> "> Figure 9
<p>Measured capacitance change magnitudes when the wind speed varied from 0 m/s to 23.9 m/s with a fixed wind direction of 0°.</p> "> Figure 10
<p>Measured capacitance normalized by the initial value when the wind speed was fixed at 12.7 m/s and the wind direction was changed from 0° to 360°.</p> "> Figure 11
<p>Measured capacitance change magnitudes when the speed was changed from 0 m/s to 23.9 m/s for the wind blowing from the positive <span class="html-italic">z</span>-axis to the negative <span class="html-italic">z</span>-axis.</p> ">
Abstract
:1. Introduction
2. Design and Simulation
2.1. Design and Principle
2.2. Simulation by FEM
3. Fabrication
3.1. Material Selection
3.2. Fabrication Process
4. Measurements
4.1. Wind Speed Experiments in xy-Plane
4.2. Wind Direction Experiments in xy-Plane
4.3. Wind Speed Experiments in z-Axis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suomi, I.; Vihma, T. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities. Sensors 2018, 18, 1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Putten AF, P.; Middelhoek, S. Integrated silicon anemometer. Electron. Lett. 1974, 10, 425–426. [Google Scholar] [CrossRef]
- Stemme, G. A CMOS integrated silicon gas-flow sensor with pulse-modulated output. Sens. Actuators 1988, 14, 293–303. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Qin, M.; Huang, Q.-A. 2-D micromachined thermal wind sensors-A review. IEEE Internet Things J. 2014, 1, 216–232. [Google Scholar] [CrossRef]
- Moser, D.; Lenggenhager, R.; Wachutka, G.; Baltes, H. Fabrication and modelling of CMOS microbridge gas-flow sensors. Sens. Actuators B Chem. 1992, 6, 165–169. [Google Scholar] [CrossRef]
- Neda, T.; Nakamura, K.; Takumi, T. A polysilicon flow sensor for gas flow meters. Sens. Actuator A Phys. 1996, 54, 626–631. [Google Scholar] [CrossRef]
- Hung, S.-T.; Wong, S.-C.; Fang, W. The development and application of microthermal sensors with a mesh-membrane supporting structure. Sens. Actuators A Phys. 2000, 84, 70–75. [Google Scholar] [CrossRef]
- Wang, S.; Yi, Z.; Qin, M.; Huang, Q.-A. Modeling, simulation, and fabrication of a 2-D anemometer based on a temperature-balanced mode. IEEE Sens. J. 2019, 19, 4796–4803. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, Z.; Gao, S.; Qin, M.; Huang, Q.-A. Effect of insulation trenches on micromachined silicon thermal wind sensors. IEEE Sens. J. 2017, 17, 8324–8331. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Seo, C.-T.; Eun, D.-S.; Park, S.-G.; Jo, C.-S.; Lee, J.-H. Characteristics of cantilever beam fabricated by silicon micromachining for flow sensor application. In Proceedings of the Sensors 2003 IEEE, Toronto, ON, Canada, 22–24 October 2003; pp. 642–646. [Google Scholar]
- Wang, Q.; Wang, Y.; Dong, L. MEMS flow sensor using suspended graphene diaphragm with microhole arrays. J. Microelectromech. Syst. 2018, 27, 951–953. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. A novel piezoelectric based wind energy harvester for low-power autonomous wind speed sensor. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 2175–2180. [Google Scholar]
- Liu, H.; Zhang, S.; Kathiresan, R.; Kobayashi, T.; Lee, C. Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl. Phys. Lett. 2012, 100, 223905. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, P.; Dei, M.; Piotto, M. A Low-Power 2-D Wind Sensor Based on Integrated Flow Meters. IEEE Sens. J. 2009, 9, 1688–1696. [Google Scholar] [CrossRef]
- Kessler, Y.; Ilic, B.R.; Krylov, S.; Liberzon, A. Flow sensor based on the snap-through detection of a curved micromechanical beam. J. Microelectromech. Syst. 2018, 27, 945–947. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Wan, Y.; Qin, M.; Huang, Q. Novel anemometer based on inductor bending effect. J. Microelectromech. Syst. 2019, 28, 321–323. [Google Scholar] [CrossRef]
- Yi, Z.; Wan, Y.; Qin, M.; Huang, Q. Quadruple sensitivity improvement for wind speed sensor using dual-layer bended inductors. Sens. Actuator A Phys. 2020, 303, 1–4. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Koo, J.H.; Kim, T.R.; Lee, S.; Schwartz, G.; Chang, H. Stretchable Energy-Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Adv. Mater. 2014, 43, 7324–7332. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, J.; Kim, Y.; Bae, S.; Kim, T.-W.; Park, K.-I.; Hong, B.H.; Jeong, C.K.; Lee, S.-K. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 2020, 78, 105266. [Google Scholar] [CrossRef]
- Lai, H.; Yuan, C.; Lin, H. Camber deformation property and fracture strain of flexible film made by polydimethylsiloxane. Opt. Mater. 2020, 107, 110066. [Google Scholar] [CrossRef]
Axes | v > 0 | v < 0 | |
---|---|---|---|
x-axis | |||
y-axis | |||
z-axis | N/A |
Mass Ratio | Young’s Modulus [MPa] |
---|---|
8:1 | 2.15 ± 0.02 |
10:1 | 1.97 ± 0.03 |
12:1 | 1.62 ± 0.02 |
15:1 | 1.25 ± 0.03 |
Parameters | C1 | C2 | C3 | C4 |
---|---|---|---|---|
y0 | −0.00276 | −0.00298 | −0.00342 | −0.00293 |
A | 0.01993 | 0.02038 | 0.02024 | 0.01942 |
ω | 1.00065 | 0.98817 | 1.00662 | 1.01593 |
φ | 136.6596 | 44.39655 | −44.23719 | −136.10507 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Yi, Z. 2.5D Flexible Wind Sensor Using Differential Plate Capacitors. Sensors 2021, 21, 3101. https://doi.org/10.3390/s21093101
Wan Y, Yi Z. 2.5D Flexible Wind Sensor Using Differential Plate Capacitors. Sensors. 2021; 21(9):3101. https://doi.org/10.3390/s21093101
Chicago/Turabian StyleWan, Yu, and Zhenxiang Yi. 2021. "2.5D Flexible Wind Sensor Using Differential Plate Capacitors" Sensors 21, no. 9: 3101. https://doi.org/10.3390/s21093101
APA StyleWan, Y., & Yi, Z. (2021). 2.5D Flexible Wind Sensor Using Differential Plate Capacitors. Sensors, 21(9), 3101. https://doi.org/10.3390/s21093101