Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method
<p>Framework of the CV-CNN model.</p> "> Figure 2
<p>Framework of the proposed model.</p> "> Figure 3
<p>Original Flevoland dataset. (<b>a</b>) Pauli RGB image for the Flevoland dataset. (<b>b</b>) Ground truth and legend of (<b>a</b>).</p> "> Figure 4
<p>Loss curves on the Flevoland dataset.</p> "> Figure 5
<p>Classification results for the Flevoland dataset. (<b>a</b>–<b>d</b>) Classification results of the different approaches: (<b>a</b>) Wishart, (<b>b</b>) SVM, (<b>c</b>) CV-CNN, (<b>d</b>) proposed method. (<b>e</b>–<b>h</b>) Results overlaid with the ground-truth maps of (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 6
<p>Trends of the OA with different numbers of training samples for the Flevoland dataset.</p> "> Figure 7
<p>Original Oberpfaffenhofen dataset. (<b>a</b>) Pauli RGB image. (<b>b</b>) Ground truth and legend of (<b>a</b>).</p> "> Figure 8
<p>Loss curves on Oberpfaffenhofen dataset.</p> "> Figure 9
<p>Classification results for the Oberpfaffenhofen dataset. (<b>a</b>–<b>d</b>) Classification results of the different approaches: (<b>a</b>) Wishart, (<b>b</b>) SVM, (<b>c</b>) CV-CNN, (<b>d</b>) proposed method. (<b>e</b>–<b>h</b>) Results overlaid with the ground-truth maps of (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 10
<p>Trends of the OA with different numbers of training samples for the Oberpfaffenhofen dataset.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. PolSAR Data
2.2. Traditional Classifiers
2.2.1. Wishart Classification
2.2.2. Support Vector Machine Classification
2.2.3. Deep Learning Method for PolSAR
3. The Proposed Approach
3.1. The Deep Learning Method
3.2. Configuration of the Proposed Method
3.3. Preprocessing of PolSAR Data for CV-CNN
4. Experimental Section
4.1. Experiments with the Flevoland Dataset
4.2. Experiments with the Oberpfaffenhofen Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Nie, X.; Ding, S.; Huang, X.; Qiao, H.; Zhang, B.; Jiang, Z.P. An Online Multiview Learning Algorithm for PolSAR Data Real-Time Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 302–320. [Google Scholar] [CrossRef]
- Ronny Hänsch, O.H. Classification of Polarimetric SAR Data by Complex Valued Neural Networks; ISPRS Hannover Workshop-high-resolution Earth Imaging for Geospatial Information; Berlin Institute of Technology: Berlin, Germany, 2014. [Google Scholar]
- Liu, C.; Gierull, C.H. A new application for Po1SAR imagery in the field of moving target indication/ship detection. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3426–3436. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Zalite, K.; Noorma, M.; Hajnsek, I. Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1382–1396. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR. Proc. IEEE 2012, 100, 2851–2860. [Google Scholar] [CrossRef]
- Gao, H.; Wang, C.; Wang, G.; Zhu, J.; Tang, Y.; Shen, P.; Zhu, Z. A Crop Classification Method Integrating GF-3 PolSAR and Sentinel-2A Optical Data in the Dongting Lake Basin. Sensors 2018, 18, 3139. [Google Scholar] [CrossRef] [Green Version]
- Nemni, E.; Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [Google Scholar] [CrossRef]
- Kong, J.A.; Swartz, A.A.; Yueh, H.A.; Novak, L.M.; Shin, R.T. Identification of Terrain Cover Using the Optimum Polarimetric Classifier. J. Electromagn. Waves Appl. 1988, 2, 171–194. [Google Scholar]
- Lee, J.S.; Grunes, M.R. Classification of multi-look polarimetric SAR data based on complex Wishart distribution. In Proceedings of the NTC-92: National Telesystems Conference, Washington, DC, USA, 19–20 May 1992; pp. 2299–2311. [Google Scholar]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-Based Classification With an Adaptive Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. [Google Scholar] [CrossRef]
- Wen, X.; Ziwei, X.; Feng, Z.; Bo, R. POLSAR image classification via Clustering-WAE classification model. IEEE Access 2018, 6, 40041–40049. [Google Scholar]
- Freeman, A.; Villasenor, J.; Klein, J.D.; Hoogeboom, P.; Groot, J. On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops. Int. J. Remote Sens. 1994, 15, 1799–1812. [Google Scholar] [CrossRef]
- Kouskoulas, Y.; Ulaby, F.T.; Pierce, L.E. The Bayesian hierarchical classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2004, 42, 469–477. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, W.; Gong, J. An Unsupervised Scattering Mechanism Classification Method for PolSAR Images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1677–1681. [Google Scholar] [CrossRef]
- Zhao, L.W.; Zhou, X.G.; Jiang, Y.M.; Kuang, G.Y. Iterative classification of polarimetric SAR image based on the freeman decomposition and scattering entropy. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007. [Google Scholar]
- Lee, J.-S.; Grunes, M.; Ainsworth, T.; Du, L.-J.; Schuler, D.; Cloude, S. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Chang, G.; Oh, Y. Polarimetric SAR Image Classification Based on the Degree of Polarization and Co-polarized Phase-Difference Statistics. J. Korean Inst. Electromagn. Eng. Sci. 2007, 18, 1345–1351. [Google Scholar] [CrossRef]
- Hao, D.; Xin, X.; Lei, W.; Pu, F. Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information. Sensors 2018, 18, 611. [Google Scholar]
- Hou, B.; Kou, H.; Jiao, L. Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3072–3081. [Google Scholar] [CrossRef]
- Liu, F.; Jiao, L.; Tang, X. Task-Oriented GAN for PolSAR Image Classification and Clustering. IEEE Trans. Neural. Netw. Learn. Syst. 2019, 30, 2707–2719. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of Fruit-Bearing Branches and Localization of Litchi Clusters for Vision-Based Harvesting Robots. IEEE Access 2020, 8, 117746–117758. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Hao, D.; Rong, G.; Pu, F. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks. Sensors 2018, 18, 769. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hirose, A.; Asano, Y.; Hamano, T. Developmental Learning With Behavioral Mode Tuning by Carrier-Frequency Modulation in Coherent Neural Networks. IEEE Trans. Neural. Netw. 2006, 17, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.-Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. Enhanced Radar Imaging Using a Complex-Valued Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Zhu, Z. Learning Deep Networks under Noisy Labels for Remote Sensing Image Scene Classification. In Proceedings of the 2019 IEEE International Geoscience And Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3025–3028. [Google Scholar]
- Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Front. Plant Sci. 2020, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, L.; Siva, P.; Wong, A.; Clausi, D.A. Hyperspectral Image Classification With Limited Labeled Training Samples Using Enhanced Ensemble Learning and Conditional Random Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2427–2438. [Google Scholar] [CrossRef]
- Xie, W.; Ma, G.; Zhao, F.; Liu, H.; Zhang, L. PoISAR image classification via a novel semi-supervised recurrent complex-valued convolution neural network. Neurocomputing 2020, 388, 255–268. [Google Scholar] [CrossRef]
- Liu, W.; Qin, R.; Su, F. Weakly supervised classification of time-series of very high resolution remote sensing images by transfer learning. Remote Sens. Lett. 2019, 10, 689–698. [Google Scholar] [CrossRef]
- Xu, L.; Clausi, D.A.; Li, F.; Wong, A. Weakly Supervised Classification of Remotely Sensed Imagery Using Label Constraint and Edge Penalty. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1424–1436. [Google Scholar] [CrossRef]
- Persello, C.; Bruzzone, L. Active and Semisupervised Learning for the Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6937–6956. [Google Scholar] [CrossRef]
- Li, Y.; Xing, R.; Jiao, L.; Chen, Y.; Shang, R. Semi-Supervised PolSAR Image Classification Based on Self-Training and Superpixels. Remote Sens. 2019, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Fang, F.; Wang, R.; Wan, B.; Wu, X. An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images. Sensors 2020, 20, 6699. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, D.; Yang, S.; Hou, B.; Gou, S.; Xiong, T.; Jiao, L. Semisupervised Feature Extraction With Neighborhood Constraints for Polarimetric SAR Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Hou, B.; Wu, Q.; Wen, Z.; Jiao, L. Robust Semisupervised Classification for PolSAR Image With Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6440–6455. [Google Scholar] [CrossRef]
- Huang, Z.; Datcu, M.; Pan, Z.; Lei, B. Deep SAR-Net: Learning objects from signals. ISPRS J. Photogramm. Remote Sens. 2020, 161, 179–193. [Google Scholar] [CrossRef]
- Steele, B.M. Combining Multiple Classifiers—An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping. Remote Sens. Environ. 2000, 74, 545–556. [Google Scholar] [CrossRef]
- Ma, X.; Shen, H.; Yang, J.; Zhang, L.; Li, P. Polarimetric-Spatial Classification of SAR Images Based on the Fusion of Multiple Classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 961–971. [Google Scholar]
- Kim, H.; Kim, H.; Moon, H.; Ahn, H. A weight-adjusted voting algorithm for ensembles of classifiers. J. Korean Stat. Soc. 2011, 40, 437–449. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, F. Wishart Deep Stacking Network for Fast POLSAR Image Classification. IEEE Trans. Image Process. 2016, 25, 3273–3286. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Maghsoudi, Y.; Collins, M.; Leckie, D.G. Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 139–150. [Google Scholar] [CrossRef]
- Negri, R.G.; Frery, A.C.; Silva, W.B.; Mendes, T.S.G.; Dutra, L.V. Region-based classification of PolSAR data using radial basis kernel functions with stochastic distances. Int. J. Digit. Earth 2019, 12, 699–719. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.J.; Wang, X.F. Overview of Hyperspectral Image Classification. J. Sens. 2020, 2020, 4817234. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; de Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar]
Data Set | Platform | Polarization | Spatial Resolution | Band | Number of Looks | Size |
---|---|---|---|---|---|---|
Flevoland | AIRSAR | Quad-polarization | 10 m × 10 m | L | 4 | 1024 × 750 |
Oberpfaffenhofen | ESAR | Quad-polarization | 3 m × 3 m | L | 1 | 1300 × 1200 |
Class | Number of Samples | Wishart | SVM | CV-CNN | Strong Dataset | Number of Samples in Strong Dataset | Proposed Method |
---|---|---|---|---|---|---|---|
Stem beans | 41 | 99.87 | 97.28 | 81.91 | 99.98 | 10,934 | 97.72 |
Peas | 61 | 89.31 | 83.23 | 97.07 | 99.22 | 12,288 | 97.93 |
Forest | 45 | 89.94 | 86.17 | 91.96 | 99.01 | 20,614 | 96.83 |
Lucerne | 38 | 97.70 | 94.54 | 90.72 | 99.98 | 15,469 | 96.82 |
Wheat | 48 | 92.84 | 81.81 | 94.95 | 99.89 | 18,442 | 96.63 |
Beet | 32 | 95.35 | 97.19 | 84.53 | 99.66 | 62,295 | 95.64 |
Potatoes | 17 | 83.27 | 53.57 | 58.14 | 85.24 | 25,780 | 80.93 |
Grass | 25 | 86.12 | 80.32 | 78.99 | 94.10 | 27,155 | 84.59 |
Rapeseed | 33 | 65.82 | 50.39 | 49.24 | 78.45 | 12,927 | 84.41 |
Barley | 17 | 78.73 | 88.90 | 89.99 | 99.84 | 19,934 | 91.29 |
Wheat 2 | 47 | 67.02 | 76.97 | 84.72 | 92.42 | 8520 | 82.64 |
Wheat 3 | 57 | 93.39 | 92.63 | 91.52 | 99.66 | 24,822 | 97.41 |
Water | 48 | 90.78 | 88.95 | 87.12 | 99.58 | 19,653 | 96.19 |
OA | -- | 87.04 | 80.78 | 81.77 | 97.34 | -- | 90.75 |
Kappa | -- | 85.96 | 79.18 | 80.25 | 97.11 | -- | 89.96 |
Class | Wishart | SVM | CV-CNN | Strong Dataset | Proposed Method |
---|---|---|---|---|---|
Built-up area | 43.66 | 46.24 | 36.86 | 61.28 | 55.46 |
Wood land | 90.05 | 81.29 | 77.39 | 93.19 | 78.67 |
Open areas | 85.16 | 89.28 | 98.06 | 99.89 | 96.29 |
OA | 75.70 | 77.01 | 78.89 | 87.47 | 82.76 |
Kappa | 61.48 | 62.46 | 63.41 | 75.21 | 71.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Ma, X.; Wu, P.; Xu, J. Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method. Sensors 2021, 21, 3006. https://doi.org/10.3390/s21093006
Zhu L, Ma X, Wu P, Xu J. Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method. Sensors. 2021; 21(9):3006. https://doi.org/10.3390/s21093006
Chicago/Turabian StyleZhu, Lekun, Xiaoshuang Ma, Penghai Wu, and Jiangong Xu. 2021. "Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method" Sensors 21, no. 9: 3006. https://doi.org/10.3390/s21093006
APA StyleZhu, L., Ma, X., Wu, P., & Xu, J. (2021). Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method. Sensors, 21(9), 3006. https://doi.org/10.3390/s21093006