Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification
<p>Graphical representation showing the extraction of the five ratio-based body measurements from an image sequence. Here, HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the mid-body width; HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body area; A2—ratio between area between legs and full-body area.</p> "> Figure 2
<p>Quasi-periodic signals produced by the five ratio-based body measurements estimated from image sequences from one individual walking at three different speeds included in (<b>a</b>) OU-ISIR dataset A and (<b>b</b>) CASIA dataset C. Here, HW1—ratio of the full-body height to the full-body width; HW2—ratio of the full-body height to the mid-body width; HW3—ratio of the full-body height to the lower-body width; A1—ratio of the apparent to the full-body area; A2—ratio between area between legs and full-body area.</p> "> Figure 3
<p>Workflow of the study.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Participants and Datasets
2.2. Data Extraction and Gait Speed Pattern Creation
2.3. Model Training and Cross-Validation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horst, F.; Lapuschkin, S.; Samek, W.; Müller, K.-R.; Schöllhorn, W.I. Explaining the Unique Nature of Individual Gait Patterns with Deep Learning. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thompson, N.; Stebbins, J.; Seniorou, M.; Newham, D. Muscle Strength and Walking Ability in Diplegic Cerebral Palsy: Implications for Assessment and Management. Gait Posture 2011, 33, 321–325. [Google Scholar] [CrossRef]
- Castell, M.-V.; Sánchez, M.; Julián, R.; Queipo, R.; Martín, S.; Otero, Á. Frailty Prevalence and Slow Walking Speed in Persons Age 65 and Older: Implications for Primary Care. BMC Fam. Pract. 2013, 14, 86. [Google Scholar] [CrossRef] [Green Version]
- McCrum, C.; Lucieer, F.; van de Berg, R.; Willems, P.; Fornos, A.P.; Guinand, N.; Karamanidis, K.; Kingma, H.; Meijer, K. The Walking Speed-Dependency of Gait Variability in Bilateral Vestibulopathy and Its Association with Clinical Tests of Vestibular Function. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Kirtley, C.; Whittle, M.W.; Jefferson, R. Influence of Walking Speed on Gait Parameters. J. Biomed. Eng. 1985, 7, 282–288. [Google Scholar] [CrossRef]
- Moissenet, F.; Leboeuf, F.; Armand, S. Lower Limb Sagittal Gait Kinematics Can Be Predicted Based on Walking Speed, Gender, Age and Bmi. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Xie, Y.J.; Liu, E.Y.; Anson, E.R.; Agrawal, Y. Age-Related Imbalance Is Associated with Slower Walking Speed: Analysis from the National Health and Nutrition Examination Survey. J. Geriatr. Phys. Ther. 2017, 40, 183. [Google Scholar] [CrossRef] [PubMed]
- De Cock, A.-M.; Fransen, E.; Perkisas, S.; Verhoeven, V.; Beauchet, O.; Remmen, R.; Vandewoude, M. Gait Characteristics under Different Walking Conditions: Association with the Presence of Cognitive Impairment in Community-Dwelling Older People. PLoS ONE 2017, 12, e0178566. [Google Scholar] [CrossRef] [PubMed]
- Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Aminian, K.; Newman, C.J.; Armand, S. Walking Speed of Children and Adolescents with Cerebral Palsy: Laboratory Versus Daily Life. Front. Bioeng. Biotechnol. 2020, 8, 812. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, H.L.; Brown, S.J.; Price, M.; Butterworth, C.; Groenevelt, R.; Jackson, K.; Walker, L.; Rees, N.; Clayton, A.; Reeves, N.D. Return to Employment after Stroke in Young Adults: How Important Is the Speed and Energy Cost of Walking? Stroke 2019, 50, 3198–3204. [Google Scholar] [CrossRef]
- Nadkarni, N.K.; Mawji, E.; McIlroy, W.E.; Black, S.E. Spatial and Temporal Gait Parameters in Alzheimer’s Disease and Aging. Gait Posture 2009, 30, 452–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiser, W.M.; Hays, N.P.; Rogers, S.C.; Kajkenova, O.; Williams, A.E.; Evans, C.M.; Evans, W.J. Energetics of Walking in Elderly People: Factors Related to Gait Speed. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2010, 65, 1332–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, C.; Moissenet, F. A Multimodal Dataset of Human Gait at Different Walking Speeds Established on Injury-Free Adult Participants. Sci. Data 2019, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.; Mongeon, D.; Prince, F. Biomechanical Parameters for Gait Analysis: A Systematic Review of Healthy Human Gait. Phys. Ther. Rehabil. 2017, 4, 6. [Google Scholar] [CrossRef]
- Khokhlova, M.; Migniot, C.; Morozov, A.; Sushkova, O.; Dipanda, A. Normal and Pathological Gait Classification Lstm Model. Artif. Intell. Med. 2019, 94, 54–66. [Google Scholar] [CrossRef]
- Murary, M.; Drought, A.; Kory, R. Walking Pattern of Movement. Am. J. Med. 1967, 46, 290–332. [Google Scholar]
- Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Newman, C.J.; Armand, S.; Aminian, K. What Is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy? Sensors 2018, 18, 394. [Google Scholar] [CrossRef] [Green Version]
- Ancillao, A. Stereophotogrammetry in Functional Evaluation: History and Modern Protocols. In Modern Functional Evaluation Methods for Muscle Strength and Gait Analysis; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sandau, M.; Koblauch, H.; Moeslund, T.B.; Aanæs, H.; Alkjær, T.; Simonsen, E.B. Markerless Motion Capture Can Provide Reliable 3d Gait Kinematics in the Sagittal and Frontal Plane. Med. Eng. Phys. 2014, 36, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Corazza, S.; Mündermann, L.; Gambaretto, E.; Ferrigno, G.; Andriacchi, T.P. Markerless Motion Capture through Visual Hull, Articulated Icp and Subject Specific Model Generation. Int. J. Comput. Vis. 2010, 87, 156. [Google Scholar] [CrossRef]
- Castelli, A.; Paolini, G.; Cereatti, A.; Della Croce, U. A 2d Markerless Gait Analysis Methodology: Validation on Healthy Subjects. Comput. Math. Methods Med. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Verlekar, T.T.; Soares, L.D.; Correia, P.L. Automatic Classification of Gait Impairments Using a Markerless 2d Video-Based System. Sensors 2018, 18, 2743. [Google Scholar] [CrossRef] [Green Version]
- Ceseracciu, E.; Sawacha, Z.; Cobelli, C. Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection During Gait: Proof of Concept. PLoS ONE 2014, 9, e87640. [Google Scholar] [CrossRef] [PubMed]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The Evolution of Methods for the Capture of Human Movement Leading to Markerless Motion Capture for Biomechanical Applications. J. Neuroeng. Rehabil. 2006, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Sundaraj, K.; Ahmad, B.; Ahamed, N.; Islam, A. Gait Disorder Rehabilitation Using Vision and Non-Vision Based Sensors: A Systematic Review. Bosn. J. Basic Med Sci. 2012, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikandar, T.; Samsudin, W.N.A.W.; Ghazali, K.H.; Rabbi, M.F. Triangle and Trapezoid Area Features for Gait Authentication. In Proceedings of the 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 3–4 August 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Zeng, W.; Wang, C. Gait Recognition across Different Walking Speeds Via Deterministic Learning. Neurocomputing 2015, 152, 139–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Y.; Lin, W.; Zhang, X.; Li, L. Backward Registration-Based Aspect Ratio Similarity for Image Retargeting Quality Assessment. IEEE Trans. Image Process. 2016, 25, 4286–4297. [Google Scholar] [CrossRef]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using Wearable Sensors to Classify Subject-Specific Running Biomechanical Gait Patterns Based on Changes in Environmental Weather Conditions. PLoS ONE 2018, 13, e0203839. [Google Scholar] [CrossRef] [Green Version]
- Ahamed, N.U.; Kobsar, D.; Benson, L.C.; Clermont, C.A.; Osis, S.T.; Ferber, R. Subject-Specific and Group-Based Running Pattern Classification Using a Single Wearable Sensor. J. Biomech. 2019, 84, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Sueiras, J.; Ruiz, V.; Sanchez, A.; Velez, J.F. Offline Continuous Handwriting Recognition Using Sequence to Sequence Neural Networks. Neurocomputing 2018, 289, 119–128. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech Emotion Recognition Using Deep 1d & 2d Cnn Lstm Networks. Biomed. Signal. Process. Control. 2019, 47, 312–323. [Google Scholar]
- Liu, G.; Guo, J. Bidirectional Lstm with Attention Mechanism and Convolutional Layer for Text Classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Yi, C.; Jiang, F.; Bhuiyan, M.Z.A.; Yang, C.; Gao, X.; Guo, H.; Ma, J.; Su, S. Smart Healthcare-Oriented Online Prediction of Lower-Limb Kinematics and Kinetics Based on Data-Driven Neural Signal Decoding. Future Gener. Comput. Syst. 2021, 114, 96–105. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparative Analysis of Forecasting Financial Time Series Using Arima, Lstm, and Bilstm. arXiv 2019, arXiv:1911.09512. [Google Scholar]
- Dvornek, N.C.; Yang, D.; Ventola, P.; Duncan, J.S. Learning Generalizable Recurrent Neural Networks from Small Task-Fmri Datasets. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Edara, D.C.; Vanukuri, L.P.; Sistla, V.; Kolli, V.K.K. Sentiment Analysis and Text Categorization of Cancer Medical Records with Lstm. J. Ambient Intell. Hum. Comput. 2019, 1–17. [Google Scholar] [CrossRef]
- Moore, J.K.; Hnat, S.K.; van den Bogert, A.J. An Elaborate Data Set on Human Gait and the Effect of Mechanical Perturbations. PeerJ 2015, 3, e918. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals. PeerJ 2018, 6, e4640. [Google Scholar] [CrossRef] [Green Version]
- Ortells, J.; Herrero-Ezquerro, M.T.; Mollineda, R.A. Vision-Based Gait Impairment Analysis for Aided Diagnosis. Med. Biol. Eng. Comput. 2018, 56, 1553–1564. [Google Scholar] [CrossRef]
- Makihara, Y.; Mannami, H.; Tsuji, A.; Hossain, M.A.; Sugiura, K.; Mori, A.; Yagi, Y. The Ou-Isir Gait Database Comprising the Treadmill Dataset. IPSJ Trans. Comput. Vis. Appl. 2012, 4, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Huang, K.; Yu, S.; Tan, T. Efficient Night Gait Recognition Based on Template Matching. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The Ou-Isir Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, W.Q. Human Gait Recognition Based on Frame-by-Frame Gait Energy Images and Convolutional Long Short-Term Memory. Int. J. Neural Syst. 2020, 30, 1950027. [Google Scholar] [CrossRef]
- Guan, Y.; Li, C.-T. A Robust Speed-Invariant Gait Recognition System for Walker and Runner Identification. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013. [Google Scholar]
- Verlekar, T.T.; De Vroey, H.; Claeys, K.; Hallez, H.; Soares, L.D.; Correia, P.L. Estimation and Validation of Temporal Gait Features Using a Markerless 2d Video System. Comput. Methods Programs Biomed. 2019, 175, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Carey, N. Establishing Pedestrian Walking Speeds. Portland State Univ. 2005, 1, 4. [Google Scholar]
- Chakraborty, S.; Nandy, A.; Yamaguchi, T.; Bonnet, V.; Venture, G. Accuracy of Image Data Stream of a Markerless Motion Capture System in Determining the Local Dynamic Stability and Joint Kinematics of Human Gait. J. Biomech. 2020, 109718. [Google Scholar] [CrossRef] [PubMed]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Bao, J.; Wang, J.; Zhang, Y. A Hybrid Cnn–Lstm Algorithm for Online Defect Recognition of Co2 Welding. Sensors 2018, 18, 4369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Xu, C.; Makihara, Y.; Li, X.; Yagi, Y.; Lu, J. Speed-Invariant Gait Recognition Using Single-Support Gait Energy Image. Multimed. Tools Appl. 2019, 78, 26509–26536. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of Walking Speed on Gait Biomechanics in Healthy Participants: A Systematic Review and Meta-Analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannering, N.; Young, T.; Spelman, T.; Choong, P. Three-Dimensional Knee Kinematic Analysis During Treadmill Gait: Slow Imposed Speed Versus Normal Self-Selected Speed. Bone Jt. Res. 2017, 6, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Romkes, J.; Bracht-Schweizer, K. The Effects of Walking Speed on Upper Body Kinematics During Gait in Healthy Subjects. Gait Posture 2017, 54, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Wagenaar, R.; Van Emmerik, R. Resonant Frequencies of Arms and Legs Identify Different Walking Patterns. J. Biomech. 2000, 33, 853–861. [Google Scholar] [CrossRef]
- Twardzik, E.; Duchowny, K.; Gallagher, A.; Alexander, N.; Strasburg, D.; Colabianchi, N.; Clarke, P. What Features of the Built Environment Matter Most for Mobility? Using Wearable Sensors to Capture Real-Time Outdoor Environment Demand on Gait Performance. Gait Posture 2019, 68, 437–442. [Google Scholar] [CrossRef]
- Nandy, A.; Chakraborty, R.; Chakraborty, P. Cloth Invariant Gait Recognition Using Pooled Segmented Statistical Features. Neurocomputing 2016, 191 (Suppl. C), 117–140. [Google Scholar] [CrossRef]
- Langs, G.; Menze, B.H.; Lashkari, D.; Golland, P. Detecting Stable Distributed Patterns of Brain Activation Using Gini Contrast. NeuroImage 2011, 56, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Brodie, M.A.; Coppens, M.J.; Ejupi, A.; Gschwind, Y.J.; Annegarn, J.; Schoene, D.; Wieching, R.; Lord, S.R.; Delbaere, K. Comparison between Clinical Gait and Daily-Life Gait Assessments of Fall Risk in Older People. Geriatr. Gerontol. Int. 2017, 17, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Kondragunta, J.; Hirtz, G. Gait Parameter Estimation of Elderly People Using 3d Human Pose Estimation in Early Detection of Dementia. In Proceedings of the 2020 Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Dentamaro, V.; Impedovo, D.; Pirlo, G. Gait Analysis for Early Neurodegenerative Diseases Classification through the Kinematic Theory of Rapid Human Movements. IEEE Access 2020, 8, 193966–193980. [Google Scholar] [CrossRef]
- De Lima, V.C.; Melo, V.H.; Schwartz, W.R. Simple and Efficient Pose-Based Gait Recognition Method for Challenging Environments. Pattern Anal. Appl. 2020, 1–11. [Google Scholar] [CrossRef]
Options | Settings |
---|---|
Weight optimization method | Adaptive moment estimation optimizer |
The initial learning rate | 0.001 |
Decay rate of squared gradient moving average | 0.99 |
Gradient threshold method | ‘global-12norm’ |
Gradient threshold | 0.9 |
Maximum epochs | 200 |
Size of the mini-batch for each training iteration | 27 |
Data shuffling | ‘never’ |
Validation frequency | 22 |
Dataset | Speed | HW1 | HW2 | HW3 | A1 | A2 |
---|---|---|---|---|---|---|
Dataset 1 | Slow walk | 69.07 (±0.99) | 80.50 (±0.99) | 61.10 (±1.08) | 55.72 (±0.74) | 19.53 (±2.20) |
Normal walk | 63.62 (±0.98) | 71.78 (±0.86) | 60.31 (±1.21) | 58.71 (±0.74) | 25.96 (±2.19) | |
Fast walk | 57.09 (±2.00) | 64.58 (±1.79) | 56.67 (±2.08) | 56.38 (±1.51) | 22.57 (±2.38) | |
Dataset 2 | Slow walk | 60.43 (±4.77) | 71.85 (±2.91) | 54.86 (±4.81) | 46.40 (±2.36) | 11.11 (±2.01) |
Normal walk | 57.73 (±6.42) | 66.58 (±4.67) | 53.60 (±6.60) | 10.77 (±0.75) | 4.21 (±0.78) | |
Fast walk | 55.15 (±7.17) | 64.09 (±5.59) | 51.66 (±7.33) | 43.14 (±3.34) | 9.53 (±2.16) |
Dataset | Speed | HW1 | HW2 | HW3 | A1 | A2 |
---|---|---|---|---|---|---|
Dataset 1 | Slow walk | 6.40 (±0.92) | 6.15 (±0.78) | 6.29 (±0.87) | 7.03 (±1.00) | 5.86 (±0.85) |
Normal walk | 6.86 (±0.72) | 6.93 (±0.66) | 6.88 (±0.73) | 7.06 (±0.64) | 7.21 (±0.68) | |
Fast walk | 8.14 (±0.61) | 7.60 (±1.02) | 8.18 (±0.65) | 8.10 (±0.65) | 7.93 (±0.70) | |
Dataset 2 | Slow walk | 2.69 (±0.41) | 2.76 (±0.42) | 2.74 (±0.39) | 3.31 (±0.45) | 2.47 (±0.58) |
Normal walk | 2.64 (±0.42) | 2.64 (±0.45) | 2.68 (±0.46) | 2.97 (±0.45) | 2.62 (±0.50) | |
Fast walk | 2.66 (±0.38) | 2.76 (±0.36) | 2.66 (±0.36) | 2.88 (±0.42) | 2.68 (±0.53) |
Dataset | Speed | Full-Body Height | Full-Body Width | Mid-Body Width | Lower-Body Width | Apparent-Body Area | Full-Body Area | Area between Legs |
---|---|---|---|---|---|---|---|---|
Dataset 1 | Slow | ±0.50 | ±12.26 | ±9.65 | ±15.19 | ±5.23 | ±12.21 | ±27.97 |
Normal | ±0.70 | ±16.13 | ±13.47 | ±17.87 | ±6.44 | ±16.02 | ±30.45 | |
Fast | ±0.92 | ±18.94 | ±16.65 | ±19.79 | ±7.16 | ±18.73 | ±29.51 | |
Dataset 2 | Slow | ±2.40 | ±17.45 | ±12.95 | ±18.68 | ±9.74 | ±17.54 | ±22.75 |
Normal | ±2.20 | ±19.00 | ±15.12 | ±19.90 | ±10.26 | ±18.86 | ±24.12 | |
Fast | ±2.52 | ±20.05 | ±16.42 | ±20.91 | ±10.50 | ±19.90 | ±24.95 |
Descriptive Statistics | Dataset 1 (Indoor Trials) | Dataset 2 (Outdoor Trials) | ||
---|---|---|---|---|
Method 1 | Method 2 | Method 1 | Method 2 | |
Number of cross-validation experiments performed | 272 | 272 | 306 | 306 |
Mean (± SD) accuracy | 88.05 (±8.85)% | 88.08 (±8.77)% | 77.52 (±7.89)% | 79.18 (±9.51)% |
25th percentile accuracy | 83.33% | 83.33% | 75.00% | 75.00% |
50th percentile or median accuracy | 89.58% | 91.67% | 75.00% | 75.00% |
75th percentile accuracy | 95.83% | 95.83% | 76.47% | 83.82% |
Minimum accuracy | 41.67% | 37.50% | 25.00% | 25.00% |
Maximum accuracy | 100.00% | 100.00% | 100.00% | 100.00% |
Lower adjacent accuracy | 66.67% | 70.83% | 73.53% | 69.12% |
Upper adjacent accuracy | 100.00% | 100.00% | 77.94% | 95.95% |
Accuracy range | 58.33% | 62.50% | 75.00% | 75.00% |
Interquartile accuracy range | 12.50% | 12.50% | 1.47% | 8.82% |
Number of outliers | 5 | 4 | 81 | 26 |
Average training time (min) | 17.43 | 17.85 | 9.71 | 10.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikandar, T.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Alqahtani, M.; Almijalli, M.; Altayyar, S.; Ahamed, N.U. Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification. Sensors 2021, 21, 2836. https://doi.org/10.3390/s21082836
Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Alqahtani M, Almijalli M, Altayyar S, Ahamed NU. Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification. Sensors. 2021; 21(8):2836. https://doi.org/10.3390/s21082836
Chicago/Turabian StyleSikandar, Tasriva, Mohammad F. Rabbi, Kamarul H. Ghazali, Omar Altwijri, Mahdi Alqahtani, Mohammed Almijalli, Saleh Altayyar, and Nizam U. Ahamed. 2021. "Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification" Sensors 21, no. 8: 2836. https://doi.org/10.3390/s21082836
APA StyleSikandar, T., Rabbi, M. F., Ghazali, K. H., Altwijri, O., Alqahtani, M., Almijalli, M., Altayyar, S., & Ahamed, N. U. (2021). Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification. Sensors, 21(8), 2836. https://doi.org/10.3390/s21082836