A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model
<p>Examples of commercial surface electromyography (sEMG) sensors. (<b>a</b>) Delsys Trigno (<a href="http://www.delsys.com/" target="_blank">http://www.delsys.com/</a>, accessed on 25 October 2020). (<b>b</b>) Cometa Mini Wave (<a href="http://www.cometasystems.com/" target="_blank">http://www.cometasystems.com/</a>, accessed on 25 October 2020). (<b>c</b>) Myo armband (<a href="http://www.thalmic.com/" target="_blank">http://www.thalmic.com/</a>, accessed on 25 January 2018). (<b>d</b>) Ottobock 13E200 (<a href="http://www.ottobock.com/" target="_blank">http://www.ottobock.com/</a>, accessed on 25 October 2020).</p> "> Figure 2
<p>Typical top-level controller of an sEMG-based prosthesis.</p> "> Figure 3
<p>Myo armband and dataglove setup in data acquisition experiments [<a href="#B33-sensors-21-02576" class="html-bibr">33</a>] (Adapted with permission license CC BY 4.0 (2017)).</p> "> Figure 4
<p>Strain gauge placement of the CyberGlove II.</p> "> Figure 5
<p>Block diagram of the nonlinear autoregressive exogenous (NARX) model-based top-level controller.</p> "> Figure 6
<p>Representative EMG signals and dataglove signals (A.U.: Arbitrary Units).</p> "> Figure 7
<p>Diagram of the NARX model network structure.</p> "> Figure 8
<p>Training setup in MATLAB. The number below each block represents the dimensions. <math display="inline"><semantics> <mrow> <mi>x</mi> <mfenced> <mi>t</mi> </mfenced> </mrow> </semantics></math> contains RMS and zero crossing (ZC) with 16 dimensions of each, and the <math display="inline"><semantics> <mrow> <mi>y</mi> <mfenced> <mi>t</mi> </mfenced> </mrow> </semantics></math> is the output feedback of 6. The delay was set to 4. The value of b in the hidden layer and the output layer was set to 0 initially and updated during the training.</p> "> Figure 9
<p>Mean square error with different numbers of neurons. The dashed lines are MSE of different subjects. The average performance was calculated from all subjects.</p> "> Figure 10
<p>Error autocorrelation of the proposed NARX model.</p> "> Figure 11
<p>Comparison of output signals after post-processing.</p> "> Figure 12
<p>Comparison of NARX outputs and target joint angles in reduced space (all channels).</p> "> Figure 13
<p>Comparison of NARX outputs and target joint angles in reduced space (single channel).</p> "> Figure 14
<p>Performance of the proposed model referring to individual movements of fingers.</p> "> Figure 15
<p>Comparison of NARX model output and the target in daily movements.</p> "> Figure 16
<p>Mean square error of daily functional movements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. NinaPro Database
2.1.1. Subjects and Acquisition Setups
2.1.2. Acquisition Protocol
2.2. NARX Controller
2.2.1. Data Preprocessing
- Dataglove Signal: For the CyberGlove joint angle data, PCA [37] was applied to the data for dimension reduction. The first six components with the largest variances, that is, the eigenvalues of the covariance matrix, were chosen as the target controller outputs. The PCA algorithm converted the original dataset into a new space allowing the control of multiple DoFs with limited controller outputs. In this study, the first six PCs were considered significant to the multiple DoF spaces. By employing the “inverse PCA” algorithm, the controller could remap PCs to the original DoFs of the prosthetic hand using the PC matrix obtained from experimental data before generating the final outputs. Thus, all DoFs of a dexterous prosthesis might be controlled in synergy with the constraints of sEMG signals. This method was implemented in the reconstruction module, as shown in Figure 5. The signals after preprocessing are shown in Figure 6.
2.2.2. Feature Extraction
2.2.3. NARX Model
2.2.4. Training Procedure
2.2.5. Network Parameter Selection
2.2.6. Post-Processing
3. Results and Discussion
3.1. Joint Angle Estimation
3.2. Generalization Ability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Afshar, P.; Oh, M. On the design of robotic hands for brain-machine interface. Neurosurg. Focus 2006, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, H.; Sankai, Y. Power Assist System HAL-3 for Gait Disorder Person BT—Computers Helping People with Special Needs; Miesenberger, K., Klaus, J., Zagler, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 196–203. [Google Scholar]
- Benko, H.; Saponas, T.S.; Morris, D.; Tan, D. Enhancing Input on and above the Interactive Surface with Muscle Sensing. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, Banff, AB, Canada, 23–25 November 2009; pp. 93–100. [Google Scholar]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.C.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.H.; Kuiken, T.A.; Hargrove, L.J. Real-time simultaneous and proportional myoelectric control using intramuscular EMG. J. Neural. Eng. 2014, 11, 66013. [Google Scholar] [CrossRef] [Green Version]
- Waldert, S. Invasive vs. Non-Invasive Neuronal Signals for Brain-Machine Interfaces: Will One Prevail? Front. Neurosci. 2016, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.M. Human machine interface: Robotizing the instinctive living. Int. Robot. Autom. J. 2018, 4, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Gil, J.; San-Jose-Gonzalez, I.; Nicolas-Alonso, L.F.; Alonso-Garcia, S. Steering a tractor by means of an EMG-based human-machine interface. Sensors 2011, 11, 7110–7126. [Google Scholar] [CrossRef] [Green Version]
- Hortal, E.; Planelles, D.; Costa, A.; Iáñez, E.; Úbeda, A.; Azorín, J.M.; Fernández, E. SVM-based Brain–Machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 2015, 151, 116–121. [Google Scholar] [CrossRef]
- Thomas, T.M.; Candrea, D.N.; Fifer, M.S.; McMullen, D.P.; Anderson, W.S.; Thakor, N.V.; Crone, N.E. Decoding Native Cortical Representations for Flexion and Extension at Upper Limb Joints Using Electrocorticography. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 293–303. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Chan, M.M.F.; Shi, J.; Chen, X.; Huang, Q.H. Sonomyography: Monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med. Eng. Phys. 2006, 28, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Allison, B.Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G.R.; Neuper, C.; Pfurtscheller, G. Toward a hybrid brain–computer interface based on imagined movement and visual attention. J. Neural Eng. 2010, 7, 26007. [Google Scholar] [CrossRef]
- Ke, A.; Huang, J.; Chen, L.; Gao, Z.; He, J. An Ultra-Sensitive Modular Hybrid EMG–FMG Sensor with Floating Electrodes. Sensors 2020, 20, 4775. [Google Scholar] [CrossRef]
- Milosevic, B.; Benatti, S.; Farella, E. Design challenges for wearable EMG applications. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1432–1437. [Google Scholar]
- Tucker, M.R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; del R Millán, J.; Riener, R.; Vallery, H.; Gassert, R. Control strategies for active lower extremity prosthetics and orthotics: A review. J. Neuroeng. Rehabil. 2015, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Mesa, I.; Rubio, A.; Tubia, I.; De No, J.; Diaz, J. Channel and feature selection for a surface electromyographic pattern recognition task. Expert Syst. Appl. 2014, 41, 5190–5200. [Google Scholar] [CrossRef]
- McCool, P.; Petropoulakis, L.; Soraghan, J.J.; Chatlani, N. Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement. Biomed. Signal Process. Control 2015, 18, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.-C.; Luh, J.-J.; Lin, T.-T. A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition. Expert Syst. Appl. 2015, 42, 3327–3341. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 2014, 117, 247–256. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawamoto, H.; Sankai, Y. Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3063–3068. [Google Scholar]
- Zhang, F.; Li, P.; Hou, Z.-G.; Lu, Z.; Chen, Y.; Li, Q.; Tan, M. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing 2012, 78, 139–148. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Zhang, X.; Wang, L.; Lian, Q.; Liu, Y.; He, J.; Li, D.; Jin, Z. Human lower extremity joint moment prediction: A wavelet neural network approach. Expert Syst. Appl. 2014, 41, 4422–4433. [Google Scholar] [CrossRef]
- Aung, Y.M.; Al-Jumaily, A. sEMG Based ANN for Shoulder Angle Prediction. Procedia Eng. 2012, 41, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Amsuess, S.; Goebel, P.; Graimann, B.; Farina, D. Extending mode switching to multiple degrees of freedom in hand prosthesis control is not efficient. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 658–661. [Google Scholar]
- Merletti, R.; Botter, A.; Troiano, A.; Merlo, E.; Minetto, M.A. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art. Clin. Biomech. 2009, 24, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, V.; Castellini, C. A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front. Neurorobot. 2014, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddiss, E.; Chau, T. Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 2007, 86, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Peerdeman, B.; Boere, D.; Witteveen, H.; Hermens, H.; Stramigioli, S.; Rietman, H.; Veltink, P.; Misra, S. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehabil. Res. Dev. 2011, 48, 719–737. [Google Scholar] [CrossRef] [Green Version]
- Furui, A.; Eto, S.; Nakagaki, K.; Shimada, K.; Nakamura, G.; Masuda, A.; Chin, T.; Tsuji, T. A myoelectric prosthetic hand with muscle synergy–based motion determination and impedance model–based biomimetic control. Sci. Robot. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Atzori, M.; Gijsberts, A.; Heynen, S.; Hager, A.G.M.; Deriaz, O.; Van Der Smagt, P.; Castellini, C.; Caputo, B.; Muller, H. Building the Ninapro database: A resource for the biorobotics community. In Proceedings of the 2012 4th IEEE RAS \& EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1258–1265. [Google Scholar]
- Kuzborskij, I.; Gijsberts, A.; Caputo, B. On the challenge of classifying 52 hand movements from surface electromyography. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4931–4937. [Google Scholar]
- Staude, G.; Flachenecker, C.; Daumer, M.; Wolf, W. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods. EURASIP J. Adv. Signal Process. 2001, 2001, 867853. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Khushaba, R.N.; Kodagoda, S.; Takruri, M.; Dissanayake, G. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl. 2012, 39, 10731–10738. [Google Scholar] [CrossRef]
- Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H. Towards a high-stability EMG recognition system for prosthesis control: A one-class classification based non-target EMG pattern filtering scheme. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 4752–4757. [Google Scholar]
- Mitrea, C.; Lee, C.; Wu, Z. A Comparison between Neural Networks and Traditional Forecasting Methods: A Case Study. Int. J. Eng. Bus. Manag. 2009, 1. [Google Scholar] [CrossRef]
- Schimmack, M.; Mercorelli, P.; Maiwald, M. Combining Kalman filter and RLS-algorithm to improve a textile based sensor system in the presence of linear time-varying parameters. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 507–510. [Google Scholar]
% of Data | MSE | R | |
---|---|---|---|
Training | 70 | 3.9542 | 0.989 |
Validation | 15 | 9.4433 | 0.985 |
Testing | 15 | 10.0219 | 0.982 |
NARX | MLPNN | |
---|---|---|
Subject 1 | 5.687 | 54.483 |
Subject 2 | 10.959 | 69.872 |
Subject 3 | 9.122 | 62.162 |
Subject 4 | 3.881 | 35.721 |
Subject 5 | 5.891 | 47.635 |
Subject 6 | 10.959 | 76.403 |
Subject 7 | 13.027 | 52.895 |
Subject 8 | 32.223 | 39.113 |
Subject 9 | 13.196 | 47.868 |
Subject 10 | 22.843 | 60.540 |
NARX | MLPNN | |
---|---|---|
Subject 1 | 0.9834 | 0.8054 |
Subject 2 | 0.9787 | 0.7618 |
Subject 3 | 0.9797 | 0.7776 |
Subject 4 | 0.9845 | 0.8187 |
Subject 5 | 0.9810 | 0.7723 |
Subject 6 | 0.9791 | 0.7592 |
Subject 7 | 0.9732 | 0.7930 |
Subject 8 | 0.9347 | 0.7742 |
Subject 9 | 0.9762 | 0.8379 |
Subject 10 | 0.9768 | 0.8787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Tang, R.; Huang, Q.; He, J. A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model. Sensors 2021, 21, 2576. https://doi.org/10.3390/s21082576
Gao Z, Tang R, Huang Q, He J. A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model. Sensors. 2021; 21(8):2576. https://doi.org/10.3390/s21082576
Chicago/Turabian StyleGao, Zhaolong, Rongyu Tang, Qiang Huang, and Jiping He. 2021. "A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model" Sensors 21, no. 8: 2576. https://doi.org/10.3390/s21082576
APA StyleGao, Z., Tang, R., Huang, Q., & He, J. (2021). A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model. Sensors, 21(8), 2576. https://doi.org/10.3390/s21082576