An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach
<p>Conventional photoplethysmogram (PPG) and arterial blood pressure (ABP) measurement technique.</p> "> Figure 2
<p>(<b>a</b>) Single PPG signal; (<b>b</b>) ABP signal with properties.</p> "> Figure 3
<p>Chart of different blood pressure (BP) ranges.</p> "> Figure 4
<p>Flow chart of the overall architecture.</p> "> Figure 5
<p>Windowing PPG and ABP signals.</p> "> Figure 6
<p>Phase matching between PPG and ABP signals. (<b>a</b>) Measured Signals; (<b>b</b>) Delay estimation between signals after cross-correlation; (<b>c</b>) Shifting ABP by estimated delay.</p> "> Figure 7
<p>Distribution of (<b>a</b>) systolic BP (SBP) and (<b>b</b>) diastolic BP (DBP).</p> "> Figure 8
<p>The architecture of the proposed U-net deep learning model.</p> "> Figure 9
<p>Predicted ABP waveform from PPG of a subject. (<b>a</b>) Input PPG signal; (<b>b</b>) Reference ABP signal and Predicted ABP signal.</p> "> Figure 10
<p>Distribution of Pearson’s correlation coefficient on the test dataset.</p> "> Figure 11
<p>Error histograms of predicted (<b>a</b>) and (<b>b</b>) DBP values.</p> "> Figure 12
<p>Prediction accuracy of (<b>a</b>) SBP and (<b>b</b>) DBP values in four BP ranges.</p> "> Figure 13
<p>Linear regression plot of the (<b>a</b>) SBP, (<b>b</b>) DBP, and (<b>c</b>) MAP result.</p> "> Figure 14
<p>Bland–Altman scatterplot for (<b>a</b>) SBP and (<b>b</b>) DBP values.</p> ">
Abstract
:1. Introduction
- Estimating continuous and non-invasive ABP waveform directly from the PPG signal is new and efficient.
- Our proposed method provides SBP, DBP, and MAP values with improved accuracy.
- Our method does not need beat-segmentation of PPG signals
- Non-invasive, continuous, and rapid approach.
- Only PPG signal is required and there is no need to calculate features to estimate BP.
- The proposed U-net model can be trained using a small dataset since it is simple and computationally very efficient.
- The method can be easily applied in a wearable sensor-based device or smartphone.
2. Motivation
3. Materials and Methods
3.1. Data Collection
3.2. Pre-Processing of Data
3.3. Deep Learning Architecture
3.4. ABP Waveform Estimation Process
4. Performance Evaluation
4.1. Hyper-Parameter and Experimental Setup
4.2. Predicted Continuous and Non-Invasive ABP Waveform Analysis Results
4.3. SBP and DBP Estimation Results
4.4. Compliance with Standards
4.5. Comparison with Related Works
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irigoyen, M.-C.; De Angelis, K.; Dos Santos, F.; Dartora, D.R.; Rodrigues, B.; Consolim-Colombo, F.M. Hypertension, Blood Pressure Variability, and Target Organ Lesion. Curr. Hypertens. Rep. 2016, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- World Heart Federation. Stroke and Hypertension; World Heart Federation: Geneva, Switzerland, 2017. [Google Scholar]
- Siu, A.L. Screening for High Blood Pressure in Adults: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2015, 163, 778–786. [Google Scholar] [CrossRef] [Green Version]
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 6 February 2020).
- Špinar, J. Hypertension and ischemic heart disease. Cor Vasa 2012, 54, e433–e438. [Google Scholar] [CrossRef] [Green Version]
- Siaron, K.B.; Cortes, M.X.; Stutzman, S.E.; Venkatachalam, A.; Ahmed, K.M.; Olson, D.M. Blood Pressure measurements are site dependent in a cohort of patients with neurological illness. Sci. Rep. 2020, 10, 3382. [Google Scholar] [CrossRef] [PubMed]
- Bur, A.; Herkner, H.; Vlcek, M.; Woisetschläger, C.; Derhaschnig, U.; Karth, G.D.; Laggner, A.N.; Hirschl, M.M. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit. Care Med. 2003, 31, 793–799. [Google Scholar] [CrossRef]
- Fortin, J.; Marte, W.; Grüllenberger, R.; Hacker, A.; Habenbacher, W.; Heller, A.; Wagner, C.; Wach, P.; Skrabal, F. Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput. Biol. Med. 2006, 36, 941–957. [Google Scholar] [CrossRef]
- Drzewiecki, G.M.; Melbin, J.; Noordergraaf, A. Arterial tonometry: Review and analysis. J. Biomech. 1983, 16, 141–152. [Google Scholar] [CrossRef]
- Weiss, B.M.; Spahn, D.R.; Rahmig, H.; Rohling, R.; Pasch, T. Radial artery tonometry: Moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement. Br. J. Anaesth. 1996, 76, 405–411. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F. Carotid Artery Tonometry: Pros and Cons. Am. J. Hypertens. 2016, 29, 296–298. [Google Scholar] [CrossRef]
- Li, Y.-H.; Harfiya, L.N.; Purwandari, K.; Lin, Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors 2020, 20, 5606. [Google Scholar] [CrossRef]
- Carek, A.M.; Conant, J.; Joshi, A.; Kang, H.; Inan, O.T. SeismoWatch: Wearable Cuffless Blood Pressure Monitoring Using Pulse Transit Time. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, W.; Xing, Y.; Zhou, X. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram. J. Healthc. Eng. 2018, e7804243. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, G.; Peng, Z.; Lian, Y. Machine Learning Methods for Real-Time Blood Pressure Measurement Based on Photoplethysmography. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xu, J.; Shi, W.; Liu, J. OGRU: An Optimized Gated Recurrent Unit Neural Network. J. Phys. Conf. Ser. 2019, 1325, 012089. [Google Scholar] [CrossRef]
- Shimazaki, S.; Kawanaka, H.; Ishikawa, H.; Inoue, K.; Oguri, K. Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5042–5045. [Google Scholar]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. PLoS ONE 2013, 8, e76585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moxham, D.I. Understanding Arterial Pressure Waveforms. South. Afr. J. Anaesth. Analg. 2003, 9, 40–42. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Protogerou, A.D.; Vrachatis, D.; Konstantonis, G.; Aissopou, E.; Argyris, A.; Nasothimiou, E.; Gialafos, E.J.; Karamanou, M.; Tousoulis, D.; et al. Mean arterial pressure values calculated using seven different methods and their associations with target organ deterioration in a single-center study of 1878 individuals. Hypertens. Res. 2016, 39, 640–647. [Google Scholar] [CrossRef]
- Mf, O. Arterial Pressure Waveforms in Hypertension. Minerva Med. 2003, 94, 229–250. [Google Scholar]
- Velik, R. An objective review of the technological developments for radial pulse diagnosis in Traditional Chinese Medicine. Eur. J. Integr. Med. 2015, 7, 321–331. [Google Scholar] [CrossRef]
- Mukkamala, R.; Reisner, A.T.; Hojman, H.M.; Mark, R.G.; Cohen, R.J. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis. In Proceedings of the Computers in Cardiology 2003, Thessaloniki, Greece, 21–24 September 2003; pp. 255–258. [Google Scholar]
- Harms, M.P.M.; Wesseling, K.H.; Pott, F.; Jenstrup, M.; Van Goudoever, J.; Secher, N.H.; Van Lieshout, J.J. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin. Sci. 1999, 97, 291–301. [Google Scholar] [CrossRef]
- Stroud, M.A.; James, D.P.; Railton, D.; Sowood, P.J. Digital and brachial artery blood pressure measurements during peripheral, cold-induced vasoconstriction. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure? J. Clin. Med. 2018, 7, 316. [Google Scholar] [CrossRef] [Green Version]
- Abhay, T.; Kayalvizhi, N.; Rolant, G.J. Estimating Correlation between Arterial Blood Pressure and Photoplethysmograph. In Proceedings of the 16th International Conference on Biomedical Engineering, Singapore, 7–10 December 2017; Goh, J., Lim, C.T., Leo, H.L., Eds.; Springer: Singapore, 2017; pp. 47–52. [Google Scholar]
- Tusman, G.; Acosta, C.M.; Pulletz, S.; Böhm, S.H.; Scandurra, A.; Arca, J.M.; Madorno, M.; Sipmann, F.S. Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: An observational study. J. Clin. Monit. 2019, 33, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Shahoud, J.S.; Aeddula, N.R. Physiology, Arterial Pressure Regulation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.J.T.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. A database to support development and evaluation of intelligent intensive care monitoring. In Proceedings of the Computers in Cardiology 1996, Indianapolis, IN, USA, 8–11 September 1996; pp. 657–660. [Google Scholar]
- Moody, G.B.; Mark, R.G. The MIMIC Database 1992. Available online: https://physionet.org/content/mimicdb/1.0.0/ (accessed on 2 May 2020).
- Moody, B.; Moody, G.; Villarroel, M.; Clifford, G.; Silva, I. MIMIC-III Waveform Database 2017. Available online: https://physionet.org/content/mimic3wdb/1.0/ (accessed on 10 June 2020).
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.-W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Athaya, T.; Choi, S. Evaluation of Different Machine Learning Models for Photoplethysmogram Signal Artifact Detection. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 21–23 October 2020; pp. 1206–1208. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Poullis, M. New formula to calculate mean aor tic pressure? Lancet 1999, 353, 2075. [Google Scholar] [CrossRef]
- Time Series. Wikipedia 2020. Available online: https://en.wikipedia.org/w/index.php?title=Time_series (accessed on 29 December 2020).
- Daube, C.; Ince, R.A.; Gross, J. Simple Acoustic Features Can Explain Phoneme-Based Predictions of Cortical Responses to Speech. Curr. Biol. 2019, 29, 1924–1937.e9. [Google Scholar] [CrossRef] [Green Version]
- Botchkarev, A. A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 45–76. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, G.S.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B.; Graßl, T.; Ichikawa, T.; et al. A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. J. Hypertens. 2018, 36, 472–478. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Berson, A.S.; Robbins, C.; Jamieson, M.J.; Prisant, L.M.; Roccella, E.; Sheps, S.G. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension 1993, 21, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; Douglas, G.; Altman, M.B.; Coats, A.; Atkins, N. The British Hypertension Society Protocol for the Evaluation of Blood Pressure Measuring Devices. J. Hypertens. 1993, 11, S43–S62. [Google Scholar]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Bogdanova, A.M. Non-Invasive Blood Pressure Estimation from ECG Using Machine Learning Techniques. Sensors 2018, 18, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaelpoor, J.; Moradi, M.H.; Kadkhodamohammadi, A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput. Biol. Med. 2020, 120, 103719. [Google Scholar] [CrossRef] [PubMed]
Evaluation Factor | Value |
---|---|
Average r | 0.993 |
Minimum r | 0.262 |
Maximum r | 0.999 |
25th percentile of r | 0.989 |
75th percentile of r | 0.996 |
Measurement | MAE (mmHg) | STD (mmHg) | RMSE (mmHg) | r |
---|---|---|---|---|
SBP | 3.68 | 4.42 | 5.75 | 0.976 |
DBP | 1.97 | 2.92 | 3.52 | 0.970 |
MAP | 2.17 | 3.06 | 3.75 | 0.976 |
No. of Subjects | MAE (mmHg) | STD (mmHg) | ||
---|---|---|---|---|
AAMI [44] | BP | |||
Our work | SBP | 100 | 3.68 | 4.42 |
DBP | 1.97 | 2.92 |
Cumulative Error (%) | ||||
---|---|---|---|---|
BHS grading standard [45] | ||||
Grade A | 60% | 85% | 95% | |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% | |
Our work | SBP | 76.21% | 93.66% | 97.71% |
DBP | 93.51% | 98.70% | 99.46% |
Method | Dataset | Source | Data Used for Testing | SBP|DBP | |||
---|---|---|---|---|---|---|---|
MAE (mmHg) | STD (mmHg) | RMSE (mmHg) | r | ||||
Modified U-net (Our work) | MIMIC I, MIMIC III waveform | PPG (raw) | 29.3 h | 3.68|1.97 | 4.42|2.92 | 5.75|3.52 | 0.976|0.970 |
ANN [14] | MIMIC I | PPG (feature) | 8819 single PPG | 4.02|2.27 | 2.79|1.82 | -- | -- |
Random Forest (RF) [15] | Queensland Vital Signs | PPG (feature) | 2298 single PPG | 4.21|3.24 | 7.59|5.39 | 7.57|5.40 | 0.938|0.942 |
CNN [18] | Self-made | PPG (raw) | 50,000 single PPG | -- | 11.4 | -- | 0.71 |
PTT [13] | Self-made | SCG, PPG | -- | -- | -- | 4.8|2.9 | -- |
Long short-term memory (LSTM) [12] | MIMIC II | PPG, ECG (feature) | 135,641 PPG and ECG cycles | 4.63|3.15 | 14.50|6.44 | -- | -- |
Machine Learning [46] | Self-made, Physionet | ECG (feature) | 7.8 h | 7.72|9.45 | -- | -- | -- |
ResNet-GRU [16] | MIMIC III Waveform | PPG (raw) | 140 h | 9.43|6.88 | -- | -- | -- |
CNN and LSTM [47] | MIMIC II | PPG (raw) | 103,760 single PPG | 3.97|2.10 | 5.55|2.84 | -- | 0.95|0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athaya, T.; Choi, S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors 2021, 21, 1867. https://doi.org/10.3390/s21051867
Athaya T, Choi S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors. 2021; 21(5):1867. https://doi.org/10.3390/s21051867
Chicago/Turabian StyleAthaya, Tasbiraha, and Sunwoong Choi. 2021. "An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach" Sensors 21, no. 5: 1867. https://doi.org/10.3390/s21051867
APA StyleAthaya, T., & Choi, S. (2021). An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors, 21(5), 1867. https://doi.org/10.3390/s21051867