A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification
<p>The overall architecture of our proposed model.</p> "> Figure 2
<p>The computational process of 1-D convolution.</p> "> Figure 3
<p>The architecture of the transformer encoder.</p> "> Figure 4
<p>The difference between Mish and Relu.</p> "> Figure 5
<p>(<b>a</b>) False-color Indian Pines image. (<b>b</b>) Ground-truth map of the Indian Pines data set.</p> "> Figure 6
<p>(<b>a</b>) False-color Salinas image. (<b>b</b>) Ground-truth map of the Salinas data set.</p> "> Figure 7
<p>(<b>a</b>) False-color University of Pavia image. (<b>b</b>) Ground-truth map of the University of Pavia data set.</p> "> Figure 8
<p>The overall spectral radiance and the corresponding categories in different data sets. (<b>a</b>) Indian Pines. (<b>b</b>) Salinas. (<b>c</b>) University of Pavia.</p> "> Figure 9
<p>The spectral radiance of different pixels and the corresponding categories in Indian Pines. (<b>a</b>) Alfalfa. (<b>b</b>) Corn-notill. (<b>c</b>) Corn-mintill. (<b>d</b>) Corn. (<b>e</b>) Grass-pasture. (<b>f</b>) Grass-trees. (<b>g</b>) Grass-pasture-mowed. (<b>h</b>) Hay-windrowed. (<b>i</b>) Oats. (<b>j</b>) Soybean-notill. (<b>k</b>) Soybean-mintill. (<b>l</b>) Soybean-clean. (<b>m</b>) Wheat. (<b>n</b>) Woods. (<b>o</b>) Buildings-Grass-Trees-Drives. (<b>p</b>) Stone-Steel-Towers.</p> "> Figure 10
<p>The spectral radiance of different pixels and the corresponding categories in Salinas. (<b>a</b>) Brocoli_green_weeds_1. (<b>b</b>) Brocoli_green_weeds_2. (<b>c</b>) Fallow. (<b>d</b>) Fallow_rough_plow. (<b>e</b>) Fallow_smooth. (<b>f</b>) Stubble. (<b>g</b>) Celery. (<b>h</b>) Grapes_untrained. (<b>i</b>) Soil_vinyard_develop. (<b>j</b>) Corn_senesced_green_weeds. (<b>k</b>) Lettuce_romaine_4wk. (<b>l</b>) Lettuce_romaine_5wk. (<b>m</b>) Lettuce_romaine_6wk. (<b>n</b>) Lettuce_romaine_7wk. (<b>o</b>) Vinyard_untrained. (<b>p</b>) Vinyard_vertical_trellis.</p> "> Figure 11
<p>The spectral radiance of different pixels and the corresponding categories in the University of Pavia. (<b>a</b>) Asphalt. (<b>b</b>) Meadows. (<b>c</b>) Gravel. (<b>d</b>) Trees. (<b>e</b>) Painted metal sheets. (<b>f</b>) Bare Soil. (<b>g</b>) Bitumen. (<b>h</b>) Self-Blocking Bricks. (<b>i</b>) Shadows.</p> "> Figure 12
<p>The classification maps of Indian Pines. (<b>a</b>) Ground-truth map. (<b>b</b>)–(<b>f</b>) Classification results of 2-D-convolutional neural network (CNN), 3-D-CNN, Multi-3-D-CNN, HybridSN, and Transformer.</p> "> Figure 13
<p>The classification maps of Salinas. (<b>a</b>) Ground-truth map. (<b>b</b>)–(<b>f</b>) Classification results of 2-D-CNN, 3-D-CNN, Multi-3-D-CNN, HybridSN, and Transformer.</p> "> Figure 14
<p>The classification maps of the University of Pavia. (<b>a</b>) Ground-truth map. (<b>b</b>)–(<b>f</b>) Classification results of 2-D-CNN, 3-D-CNN, Multi-3-D-CNN, HybridSN, and Transformer.</p> "> Figure 15
<p>The classification maps of Indian Pines. (<b>a</b>) Ground-truth map. (<b>b</b>) Classification results of the Transformer without metric learning. (<b>c</b>) Classification results of the Transformer with metric learning.</p> "> Figure 16
<p>The classification maps of Salinas. (<b>a</b>) Ground-truth map. (<b>b</b>) Classification results of the Transformer without metric learning. (<b>c</b>) Classification results of the Transformer with metric learning.</p> "> Figure 17
<p>The classification maps of University of Pavia. (<b>a</b>) Ground-truth map. (<b>b</b>) Classification results of the Transformer without metric learning. (<b>c</b>) Classification results of the Transformer with metric learning.</p> "> Figure 18
<p>Effectiveness of the 1-D convolution and parameter sharing.</p> "> Figure 19
<p>Effectiveness of the activation function.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Projection Layer with Metric Learning
2.2. Transformer Encoder
2.3. Fully Connected Layers
3. Experiment
3.1. Data Set Description and Training Details
3.2. Classification Results
4. Discussion
4.1. Effectiveness of the Metric Learning
4.2. Effectiveness of the 1-D Convolution and Parameter Sharing
4.3. Effectiveness of the Activation Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSI | Hyperspectral Image |
CNN | Convolutional Neural Network |
GPU | Graphics Processing Unit |
DL | Deep Learning |
RAE | Recursive Autoencoder |
DBN | Deep Belief Network |
RBM | Boltzmann Machine |
DML | Deep Metric Learning |
NLP | Natural Language Processing |
References
- Marinelli, D.; Bovolo, F.; Bruzzone, L. A novel change detection method for multitemporal hyperspectral images based on a discrete representation of the change information. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 161–164. [Google Scholar]
- Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yang, G.; Du, B.; Zhang, L.; Zhang, L. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 4032–4046. [Google Scholar] [CrossRef]
- Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network. Ecol. Inform. 2014, 24, 60–68. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Durand, T.; Mehrasa, N.; Mori, G. Learning a deep convnet for multi-label classification with partial labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 647–657. [Google Scholar]
- Liu, Y.; Dou, Y.; Jin, R.; Li, R.; Qiao, P. Hierarchical learning with backtracking algorithm based on the visual confusion label tree for large-scale image classification. Vis. Comput. 2021, 1–21. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, Y.; Jin, R.; Qiao, P. Visual tree convolutional neural network in image classification. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 758–763. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Nagpal, C.; Dubey, S.R. A performance evaluation of convolutional neural networks for face anti spoofing. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Geng, J. Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 4073–4085. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Li, C.; Huyan, N.; Jiao, L.; Zhou, H. Recursive autoencoders-based unsupervised feature learning for hyperspectral image classification. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1928–1932. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Guo, A.J.; Zhu, F. Spectral-spatial feature extraction and classification by ann supervised with center loss in hyperspectral imagery. IEEE Trans. Geosci. Remote. Sens. 2018, 57, 1755–1767. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Misra, D. Mish: A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1d convolutional neural networks and applications: A survey. arXiv 2019, arXiv:1905.03554. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 499–515. [Google Scholar]
- Liu, B.; Yu, X.; Zhang, P.; Tan, X.; Yu, A.; Xue, Z. A semi-supervised convolutional neural network for hyperspectral image classification. Remote. Sens. Lett. 2017, 8, 839–848. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-d deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Li, B.; Chen, H. Multi-scale 3d deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
Number | Name | Training | Validation | Testing | Total |
---|---|---|---|---|---|
1 | Alfalfa | 1 | 1 | 44 | 46 |
2 | Corn-notill | 42 | 42 | 1344 | 1428 |
3 | Corn-mintill | 24 | 24 | 782 | 830 |
4 | Corn | 7 | 7 | 223 | 237 |
5 | Grass-pasture | 14 | 14 | 455 | 483 |
6 | Grass-trees | 21 | 21 | 688 | 730 |
7 | Grass-pasture-mowed | 1 | 1 | 26 | 28 |
8 | Hay-windrowed | 14 | 14 | 450 | 478 |
9 | Oats | 1 | 1 | 18 | 20 |
10 | Soybean-notill | 29 | 29 | 914 | 972 |
11 | Soybean-mintill | 73 | 72 | 2310 | 2455 |
12 | Soybean-clean | 17 | 17 | 559 | 593 |
13 | Wheat | 6 | 6 | 193 | 205 |
14 | Woods | 37 | 37 | 1191 | 1265 |
15 | Buildings-Grass-Trees-Drives | 11 | 11 | 364 | 386 |
16 | Stone-Steel-Towers | 2 | 3 | 88 | 93 |
Total | 300 | 300 | 9649 | 10,249 |
Number | Name | Training | Validation | Testing | Total |
---|---|---|---|---|---|
1 | Brocoli-green-weeds-1 | 8 | 8 | 1993 | 2009 |
2 | Brocoli-green-weeds-2 | 14 | 14 | 3698 | 3726 |
3 | Fallow | 7 | 8 | 1961 | 1976 |
4 | Fallow-rough-plow | 5 | 5 | 1384 | 1394 |
5 | Fallow-smooth | 10 | 10 | 2658 | 2678 |
6 | Stubble | 15 | 15 | 3929 | 3959 |
7 | Celery | 14 | 14 | 3551 | 3579 |
8 | Grapes-untrained | 45 | 44 | 11,182 | 11,271 |
9 | Soil-vinyard-develop | 24 | 24 | 6155 | 6203 |
10 | Corn-senesced-green-weeds | 13 | 13 | 3252 | 3278 |
11 | Lettuce-romaine-4wk | 4 | 4 | 1060 | 1068 |
12 | Lettuce-romaine-5wk | 7 | 7 | 1913 | 1927 |
13 | Lettuce-romaine-6wk | 3 | 4 | 909 | 916 |
14 | Lettuce-romaine-7wk | 4 | 4 | 1062 | 1070 |
15 | Vinyard-untrained | 29 | 28 | 7211 | 7268 |
16 | Vinyard-vertical-trellis | 7 | 7 | 1793 | 1807 |
Total | 209 | 209 | 53,711 | 54,129 |
Number | Name | Training | Validation | Testing | Total |
---|---|---|---|---|---|
1 | Asphalt | 33 | 33 | 6565 | 6631 |
2 | Meadows | 93 | 91 | 18,465 | 18,649 |
3 | Gravel | 10 | 10 | 2079 | 2099 |
4 | Trees | 15 | 15 | 3034 | 3064 |
5 | Painted metal sheets | 6 | 7 | 1332 | 1345 |
6 | Bare Soil | 25 | 25 | 4979 | 5029 |
7 | Bitumen | 6 | 6 | 1318 | 1330 |
8 | Self-Blocking Bricks | 18 | 18 | 3646 | 3682 |
9 | Shadows | 4 | 5 | 938 | 947 |
Total | 210 | 210 | 42,356 | 42,776 |
Data set | Layers | Hidden Size | MLP size | Heads |
---|---|---|---|---|
Indian Pines | 2 | 120 | 32 | 15 |
Salinas | 2 | 75 | 32 | 15 |
University of Pavia | 2 | 75 | 32 | 15 |
Layer (Type) | Output Shape | Parameter |
---|---|---|
inputLayer | (30, 25, 25) | 0 |
conv1d | (1, 120) × 25 | 632 × 25 |
2-layer transformer encoder | (1, 120) | 132,064 |
layernorm | (120) | 240 |
linear | (32) | 3872 |
Mish | (32) | 0 |
linear | (16) | 528 |
Total Trainable Parameters: 152,504 |
Layer (Type) | Output Shape | Parameter |
---|---|---|
inputLayer | (15, 25, 25) | 0 |
conv1d | (1, 75) × 25 | 302 × 25 |
2-layer transformer encoder | (1, 75) | 55,564 |
layernorm | (75) | 150 |
linear | (32) | 2432 |
Mish | (32) | 0 |
linear | (16) | 528 |
Total Trainable Parameters: 66,224 |
Layer (Type) | Output Shape | Parameter |
---|---|---|
inputLayer | (15, 25, 25) | 0 |
conv1d | (1, 75) × 25 | 302 × 25 |
2-layer transformer encoder | (1, 75) | 55,564 |
layernorm | (75) | 150 |
linear | (32) | 2432 |
Mish | (32) | 0 |
linear | (9) | 297 |
Total Trainable Parameters: 65,993 |
No. | Training Samples | 2-D-CNN | 3-D-CNN | multi-3-D-CNN | HybridSN | Transformer |
---|---|---|---|---|---|---|
1 | 1 | 95.21 | 91.16 | 100.00 | 93.20 | 90.92 |
2 | 42 | 66.10 | 69.60 | 61.43 | 83.53 | 86.70 |
3 | 24 | 86.24 | 83.31 | 81.52 | 85.33 | 85.09 |
4 | 7 | 90.38 | 93.39 | 99.40 | 83.77 | 88.03 |
5 | 14 | 96.09 | 91.34 | 96.82 | 87.87 | 94.55 |
6 | 21 | 94.44 | 95.77 | 97.46 | 93.12 | 95.67 |
7 | 1 | 100.00 | 100.00 | 99.41 | 86.43 | 91.76 |
8 | 14 | 99.29 | 98.42 | 99.43 | 92.48 | 96.42 |
9 | 1 | 98.75 | 95.66 | 99.23 | 85.84 | 88.33 |
10 | 29 | 93.18 | 86.59 | 84.59 | 85.34 | 91.12 |
11 | 73 | 83.94 | 84.19 | 74.61 | 89.53 | 88.85 |
12 | 17 | 83.52 | 77.94 | 79.98 | 79.45 | 81.18 |
13 | 6 | 98.55 | 98.35 | 99.81 | 92.59 | 96.23 |
14 | 37 | 94.89 | 92.65 | 88.89 | 94.18 | 94.55 |
15 | 11 | 87.33 | 88.18 | 86.17 | 85.99 | 86.54 |
16 | 2 | 98.91 | 95.75 | 90.00 | 84.16 | 79.63 |
KAPPA | ||||||
OA(%) | ||||||
AA(%) |
No. | Training Samples | 2-D-CNN | 3-D-CNN | multi-3-D-CNN | HybridSN | Transformer |
---|---|---|---|---|---|---|
1 | 8 | 97.73 | 99.85 | 98.17 | 96.95 | 98.47 |
2 | 14 | 99.55 | 98.99 | 98.90 | 97.24 | 98.54 |
3 | 7 | 95.64 | 94.40 | 93.01 | 98.82 | 98.02 |
4 | 5 | 95.82 | 95.96 | 90.97 | 96.57 | 95.59 |
5 | 10 | 95.36 | 96.48 | 95.46 | 96.25 | 96.04 |
6 | 15 | 99.69 | 99.06 | 98.32 | 97.24 | 97.98 |
7 | 14 | 99.43 | 98.09 | 99.12 | 99.21 | 99.03 |
8 | 45 | 88.46 | 87.04 | 90.37 | 95.05 | 94.27 |
9 | 24 | 99.71 | 99.29 | 99.00 | 98.78 | 98.97 |
10 | 13 | 98.93 | 96.13 | 95.44 | 95.69 | 95.90 |
11 | 4 | 98.52 | 88.73 | 94.46 | 97.62 | 98.30 |
12 | 7 | 93.75 | 92.55 | 93.44 | 97.96 | 94.58 |
13 | 3 | 91.00 | 86.05 | 87.08 | 90.45 | 89.99 |
14 | 4 | 93.01 | 93.60 | 90.15 | 94.14 | 98.20 |
15 | 29 | 85.40 | 86.27 | 84.28 | 87.09 | 92.75 |
16 | 7 | 99.49 | 96.38 | 94.34 | 96.27 | 99.89 |
KAPPA | ||||||
OA(%) | ||||||
AA(%) |
No. | Training Samples | 2-D-CNN | 3-D-CNN | multi-3-D-CNN | HybridSN | Transformer |
---|---|---|---|---|---|---|
1 | 33 | 72.50 | 70.35 | 71.81 | 83.17 | 89.98 |
2 | 93 | 94.77 | 95.83 | 96.62 | 96.64 | 96.89 |
3 | 10 | 85.90 | 62.36 | 73.75 | 70.79 | 88.56 |
4 | 15 | 95.62 | 77.50 | 84.48 | 84.67 | 94.82 |
5 | 6 | 97.54 | 98.49 | 96.05 | 94.76 | 92.43 |
6 | 25 | 97.06 | 96.47 | 94.88 | 94.94 | 98.06 |
7 | 6 | 97.78 | 80.24 | 83.94 | 80.61 | 88.01 |
8 | 18 | 77.08 | 64.31 | 69.62 | 71.55 | 84.98 |
9 | 4 | 87.23 | 69.38 | 71.26 | 85.06 | 93.89 |
KAPPA | ||||||
OA(%) | ||||||
AA(%) |
Network | Indian Pines | Salinas | PaviaU |
---|---|---|---|
2-D-CNN | 176,736 | 165,936 | 98,169 |
0.67 MB | 0.63 MB | 0.72 MB | |
3-D-CNN | 1,018,476 | 771,516 | 447,374 |
3.89 MB | 2.94 MB | 1.71 MB | |
multi-3-D-CNN | 634,592 | 138,976 | 84,761 |
2.42 MB | 0.53 MB | 0.32 MB | |
HybridSN | 5,122,176 | 4,845,696 | 4,844,793 |
19.54 MB | 18.48 MB | 18.48 MB | |
Transformer | 152,504 | 66,224 | 65,993 |
0.58 MB | 0.25 MB | 0.25 MB |
Network | Indian Pines | Salinas | PaviaU |
---|---|---|---|
2-D-CNN | 11,708,240 | 5,995,040 | 5,927,280 |
3-D-CNN | 162,511,650 | 83,938,540 | 83,614,405 |
multi-3-D-CNN | 52,409,984 | 20,611,712 | 20,557,504 |
HybridSN | 248,152,512 | 50,948,592 | 50,947,696 |
Transformer | 5,294,912 | 1,988,762 | 1,988,538 |
Data set | Algorithm | Training Time (s) | Testing Time (s) |
---|---|---|---|
Indian Pines | 2-D-CNN | 11.0 | 0.5 |
3-D-CNN | 54.1 | 4.26 | |
multi-3-D-CNN | 56.23 | 5.10 | |
HybridSN | 43.9 | 3.45 | |
Transformer | 32.24 | 1.31 |
Data set | Algorithm | Training Time (s) | Testing Time (s) |
---|---|---|---|
Salinas | 2-D-CNN | 6.0 | 1.9 |
3-D-CNN | 26.1 | 16.1 | |
multi-3-D-CNN | 26.2 | 18.2 | |
HybridSN | 13.9 | 7.5 | |
Transformer | 13.8 | 4.6 |
Data set | Algorithm | Training Time (s) | Testing Time (s) |
---|---|---|---|
University of Pavia | 2-D-CNN | 5.8 | 1.5 |
3-D-CNN | 26.2 | 12.7 | |
multi-3-D-CNN | 26.2 | 14.2 | |
HybridSN | 14.06 | 5.78 | |
Transformer | 13.09 | 3.33 |
Indian Pines | Salinas | |||
---|---|---|---|---|
No. | without | with | without | with |
Metric Learning | Metric Learning | Metric Learning | Metric Learning | |
1 | 99.16 | 90.92 | 98.47 | 98.47 |
2 | 85.41 | 86.70 | 98.69 | 98.54 |
3 | 84.68 | 85.09 | 96.58 | 98.02 |
4 | 85.99 | 88.03 | 93.18 | 95.59 |
5 | 92.39 | 94.55 | 96.34 | 96.04 |
6 | 94.99 | 95.67 | 98.25 | 97.98 |
7 | 72.42 | 91.76 | 99.10 | 99.03 |
8 | 95.71 | 96.42 | 93.83 | 94.27 |
9 | 79.72 | 88.33 | 99.39 | 98.97 |
10 | 89.07 | 91.12 | 96.13 | 95.90 |
11 | 89.17 | 88.85 | 98.46 | 98.30 |
12 | 79.96 | 81.18 | 94.71 | 94.58 |
13 | 96.65 | 96.23 | 91.32 | 89.99 |
14 | 95.47 | 94.55 | 97.16 | 98.21 |
15 | 89.88 | 86.54 | 92.36 | 92.75 |
16 | 89.52 | 79.63 | 99.93 | 99.89 |
KAPPA | ||||
OA(%) | ||||
AA(%) | ||||
University of Pavia | ||||
No. | without Metric Learning | with Metric Learning | ||
1 | 87.92 | 89.98 | ||
2 | 96.80 | 96.89 | ||
3 | 88.09 | 88.56 | ||
4 | 92.32 | 94.82 | ||
5 | 89.57 | 92.43 | ||
6 | 96.60 | 98.06 | ||
7 | 91.47 | 88.01 | ||
8 | 85.53 | 84.98 | ||
9 | 83.79 | 93.89 | ||
KAPPA | ||||
OA(%) | ||||
AA(%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Yang, W.; Wen, H.; Liu, Y.; Peng, Y. A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification. Sensors 2021, 21, 1751. https://doi.org/10.3390/s21051751
Hu X, Yang W, Wen H, Liu Y, Peng Y. A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification. Sensors. 2021; 21(5):1751. https://doi.org/10.3390/s21051751
Chicago/Turabian StyleHu, Xiang, Wenjing Yang, Hao Wen, Yu Liu, and Yuanxi Peng. 2021. "A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification" Sensors 21, no. 5: 1751. https://doi.org/10.3390/s21051751
APA StyleHu, X., Yang, W., Wen, H., Liu, Y., & Peng, Y. (2021). A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification. Sensors, 21(5), 1751. https://doi.org/10.3390/s21051751