T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods
<p>Distribution of the classes within the T1K+ database.</p> "> Figure 2
<p>Samples of eight classes of textures in the T1K+ database.</p> "> Figure 3
<p>Hierarchical representation of T1K+ texture classes. The first ring is composed of five classes: nature, architecture, fabric, food, and objects. The second ring is composed of 266 classes: wall, floor, shirt, flowers, pavement, textile, and many others. The last ring is composed of 1129 leaves.</p> "> Figure 4
<p>Overview of the database. For each class is included a patch taken from one of the images.</p> "> Figure 5
<p>Result of the application of t-SNE to the image pixels.</p> "> Figure 6
<p>Result of the application of t-SNE to the features extracted by a Resnet50 CNN trained on ILSVRC data.</p> "> Figure 7
<p>Distribution of the perceptual features of the T1K+database.</p> "> Figure 8
<p>Visual descriptor comparison for each of the thematic categories.</p> "> Figure 9
<p>Performance of each visual descriptor on each thematic categories.</p> "> Figure 10
<p>Accuracy trend as the average number of tiles per class of the training set increases.</p> ">
Abstract
:1. Introduction
2. The Database
2.1. Composition
2.2. Perceptual Features Distribution
2.3. Comparison with State-of-The-Art Texture Databases
3. Benchmarking Texture Descriptors
- Hist L: this is a 256-dimensional gray-scale histogram [24];
- Hist RGB (with 256 bins) and 3 marg. hist.: these are two variants of RGB histograms, both of size 768 [25];
- Quantized RGB histogram (with 48 bins) [25];
- Spatial RGB histogram as described in the paper by Huang et al. [26]. Four subregions are considered;
- Chrom. Mom.: a feature vector composed of normalized chromaticity moments of size 10. We use the version defined by Pachos et al. [27];
- Segmentation-based Fractal Texture Analysis as described in the paper by Costa et al. [28] that outputs a 24-dimensional feature vector for a gray-level image;
- Cooccurrence matrix of color indexes as described in [29].
- Gist: this feature vector is obtained considering eight orientations and four scales for each channel. The size is 1536 [32];
- Color and Edge Directivity Descriptor (CEDD) is a 144-dimensional feature vector based on a fuzzy version of the five digital filters proposed by the MPEG-7 Edge Histogram Descriptor (EHD);
- Histogram of Oriented Gradients (HoG) is a 81-dimensional feature vector computed as nine histograms encoded with nine bins [35];
- Local Binary Patterns (LBP) with a circular neighborhood of radius 2 and 16 elements, and 18 uniform and rotation invariant patterns for each channel for a total of 54 [37];
- Local Binary Patterns (LBP-nri) with a circular neighborhood of radius 2 and 16 elements, and 243 uniform and no-rotation invariant [37];
- Learned descriptors, obtained as the intermediate representations of several Convolutional Neural Networks [43]: VGG 16 and 19, SqueezeNet, Inception V3, Google Net, Residual Network of depth 50 (ResNet-50). The resulting feature vector is obtained by removing the final softmax nonlinearity and the last fully-connected layer. The network used for feature extraction is pre-trained for scene and object recognition [44] on the ILSVRC-2015 dataset [45].
4. Experiments
4.1. Evaluation Metrics
4.2. Texture Classification Experiments
4.3. Accuracy vs. Training Set Size
4.4. One Shot Texture Classification
5. Discussion
6. Conclusions
- The database has been acquired with a weak control of viewing and lighting conditions. We have shown in [38,46] that different color temperature light can be artificially simulated and that these may have an impact on texture classification performance. It would be interesting to generate such an augmented database and verify if the absolute and relative ranking of the descriptor performance is maintained.
- Other type of image artifacts and/or distortions could be artificially generated on the T1K+, such as noise, blur, jpeg compression, etc. In that case, the performance of the CNNs may decrease.
- Deep learning models could be especially designed for texture classification, with the aim of making it possible to obtain a high classification accuracy without relying on large models pre-trained for object and scene recognition.
- It would be also interesting to focus on specific portions of the T1K+, such as architecture, food, leaves, textile, etc. and to develop optimized ad-hoc methods for each domain.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two decades of texture representation for texture classification. Int. J. Comput. Vis. 2019, 127, 74–109. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 2020, 8, 29742–29754. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, J.; Yue, X.G. Visual object tracking based on residual network and cascaded correlation filters. J. Ambient. Intell. Humaniz. Comput. 2020, 1–14. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Bianconi, F.; Álvarez-Larrán, A.; Fernández, A. Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 2015, 154, 119–126. [Google Scholar] [CrossRef]
- Brodatz, P. A Photographic Album for Artists and Designers, Textures; Dover Publications: New York, NY, USA, 1966. [Google Scholar]
- Media Laboratory at Heriot-Watt University. VisTex Database. Available online: http://Vismod.Media.Mit.Edu/Vismod/Imag./Vis (accessed on 12 December 2020).
- Hayman, E.; Caputo, B.; Fritz, M.; Eklundh, J. On the significance of real-world conditions for material classification. In Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic, 11–14 May 2004; Volume 3024, pp. 253–266. [Google Scholar]
- Caputo, B.; Hayman, E.; Mallikarjuna, P. Class-specific material categorisation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volume 2, pp. 1597–1604. [Google Scholar]
- Burghouts, G.J.; Geusebroek, J.M. Material-specific adaptation of color invariant features. Pattern Recognit. Lett. 2009, 30, 306–313. [Google Scholar] [CrossRef]
- Lazebnik, S.; Schmid, C.; Ponce, J. Sparse texture representations using affine-invariant neighborhoods. In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition Citeseer (CVPR), San Diego, CA, USA, 20–25 June 2003. [Google Scholar]
- Cusano, C.; Napoletano, P.; Schettini, R. Evaluating color texture descriptors under large variations of controlled lighting conditions. JOSA A 2016, 33, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; Vedaldi, A. Describing Textures in the Wild. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 25 September 2014; pp. 3606–3613. [Google Scholar]
- Sharan, L.; Rosenholtz, R.; Adelson, E. Material perception: What can you see in a brief glance? J. Vis. 2009, 9, 784. [Google Scholar] [CrossRef]
- Casanova, D.; de Mesquita Sá, J.J., Jr.; Martinez Bruno, O. Plant Leaf Identification Using Gabor Wavelets. Int. J. Imaging Syst. Technol. 2009, 19, 236–243. [Google Scholar] [CrossRef]
- Porebski, A.; Vandenbroucke, N.; Macaire, L.; Hamad, D. A new benchmark image test suite for evaluating color texture classification schemes. Multimed. Tools Appl. J. 2014, 70, 543–556. [Google Scholar] [CrossRef]
- López, F.; Miguel Valiente, J.; Manuel Prats, J.; Ferrer, A. Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression. Pattern Recognit. 2008, 41, 1761–1772. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, H.; Dana, K.; Nishino, K. Differential angular imaging for material recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 764–773. [Google Scholar]
- Dana, K.; Van-Ginneken, B.; Nayar, S.; Koenderink, J. Reflectance and Texture of Real World Surfaces. ACM Trans. Graph. TOG 1999, 18, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Napoletano, P. Hand-crafted vs. learned descriptors for color texture classification. In International Workshop on Computational Color Imaging; Springer: Berlin/Heidelberg, Germany, 2017; pp. 259–271. [Google Scholar]
- Novak, C.L.; Shafer, S. Anatomy of a color histogram. In Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, IL, USA, 15–18 June 1992; pp. 599–605. [Google Scholar]
- Pietikainen, M.; Nieminen, S.; Marszalec, E.; Ojala, T. Accurate color discrimination with classification based on feature distributions. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 3, pp. 833–838. [Google Scholar] [CrossRef]
- Huang, J.; Kumar, S.R.; Mitra, M.; Zhu, W.J.; Zabih, R. Spatial color indexing and applications. Int. J. Comput. Vis. 1999, 35, 245–268. [Google Scholar] [CrossRef]
- Paschos, G.; Radev, I.; Prabakar, N. Image content-based retrieval using chromaticity moments. IEEE Trans. Knowl. Data Eng. 2003, 15, 1069–1072. [Google Scholar] [CrossRef]
- Costa, A.F.; Humpire-Mamani, G.; Traina, A.J.M. An efficient algorithm for fractal analysis of textures. In Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012; pp. 39–46. [Google Scholar]
- Kovalev, V.; Volmer, S. Color co-occurrence descriptors for querying-by-example. In Proceedings of the 1998 MultiMedia Modeling, MMM’98 (Cat. No. 98EX200), Lausanne, Switzerland, 12–15 October 1998; pp. 32–38. [Google Scholar]
- Bianconi, F.; Di Maria, F.; Micale, C.; Fernández, A.; Harvey, R.W. Grain-size assessment of fine and coarse aggregates through bipolar area morphology. Mach. Vis. Appl. 2015, 26, 775–789. [Google Scholar] [CrossRef]
- Chen, Y.; Dougherty, E.R. Gray-scale morphological granulometric texture classification. Opt. Eng. 1994, 33, 2713–2723. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Bianconi, F.; Harvey, R.; Southam, P.; Fernández, A. Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 2011, 20, 043006. [Google Scholar] [CrossRef]
- Barilla, M.; Spann, M. Colour-based texture image classification using the complex wavelet transform. In Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, 12–14 November 2008; pp. 358–363. [Google Scholar]
- Junior, O.L.; Delgado, D.; Gonçalves, V.; Nunes, U. Trainable classifier-fusion schemes: An application to pedestrian detection. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009. [Google Scholar]
- Bianconi, F.; Fernández, A. Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recognit. 2007, 3325–3335. [Google Scholar] [CrossRef] [Green Version]
- Mäenpää, T.; Pietikäinen, M. Classification with color and texture: Jointly or separately? Pattern Recognit. 2004, 37, 1629–1640. [Google Scholar] [CrossRef] [Green Version]
- Cusano, C.; Napoletano, P.; Schettini, R. Combining multiple features for color texture classification. J. Electron. Imaging 2016, 25, 061410. [Google Scholar] [CrossRef]
- Cusano, C.; Napoletano, P.; Schettini, R. Combining local binary patterns and local color contrast for texture classification under varying illumination. JOSA A 2014, 31, 1453–1461. [Google Scholar] [CrossRef]
- Cusano, C.; Napoletano, P.; Schettini, R. Illuminant invariant descriptors for color texture classification. In Computational Color Imaging; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7786, pp. 239–249. [Google Scholar]
- Bianco, S.; Cusano, C.; Napoletano, P.; Schettini, R. On the robustness of color texture descriptors across illuminants. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 652–662. [Google Scholar]
- Cusano, C.; Napoletano, P.; Schettini, R. Local angular patterns for color texture classification. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 111–118. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. IJCV 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Cusano, C.; Napoletano, P.; Schettini, R. Improving CNN-based texture classification by color balancing. J. Imaging 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
Acronym | Subject | Classes | Images Per Class | Image Size | Year | Reference |
---|---|---|---|---|---|---|
Brodatz | Mixed | 111 | 1 | 1966 | [9] | |
VisTex | Mixed | 167 | 1 | 1995 | [10] | |
CUReT | Mixed | 61 | 93 | 1999 | [22] | |
KTH-TIPS | Mixed | 10 | 81 | 2004 | [11] | |
UIUC | Mixed | 25 | 40 | 2005 | [14] | |
KTH-TIPS2b | Mixed | 11 | 432 | 2006 | [12] | |
V×C_TSG | Ceramic tiles | 42 | 12 | 2008 | [20] | |
ALOT | Mixed | 250 | 100 | 2009 | [13] | |
FMD | Materials | 10 | 100 | 2009 | [17] | |
PlantLeaves | Plant leaves | 20 | 60 | 2009 | [18] | |
DTD | Texture attributes | 47 | 120 | 2014 | [16] | |
NewBarkTex | Barks | 6 | 273 | 2014 | [19] | |
RawFooT | Food | 68 | 46 | 2016 | [15] | |
GTOS | Terrain | 40 | 856 | 2016 | [21] | |
T1K+ | Mixed | 1129 | 5.3 | 2021 | This paper |
Features | Acc. | Pr | Re | F1 |
---|---|---|---|---|
Hist L | 16.48 | 14.73 | 16.52 | 15.58 |
Hist RGB | 42.24 | 41.97 | 42.38 | 42.18 |
3 marg. hist. | 37.67 | 36.56 | 37.98 | 37.25 |
qHist RGB | 42.49 | 42.10 | 42.62 | 42.36 |
sHist RGB | 26.28 | 31.12 | 26.63 | 28.70 |
Chrom. Mom. | 15.70 | 15.94 | 15.88 | 15.91 |
Cooc. Matr. | 4.55 | 4.62 | 4.52 | 4.57 |
SFTA | 10.28 | 10.03 | 10.35 | 10.19 |
Granulometry | 26.40 | 27.08 | 26.63 | 26.86 |
GIST | 29.53 | 33.28 | 29.74 | 31.41 |
DT-CWT | 25.20 | 25.44 | 25.33 | 25.39 |
CEDD | 22.31 | 23.05 | 22.45 | 22.74 |
HOG | 11.67 | 12.88 | 11.70 | 12.27 |
Gabor | 29.63 | 30.01 | 29.84 | 29.92 |
LBP | 26.94 | 27.51 | 26.93 | 27.21 |
LBP-nri | 31.26 | 31.91 | 31.23 | 31.57 |
LBP-LCC | 29.88 | 29.76 | 29.92 | 29.84 |
vgg16 | 64.85 | 65.84 | 64.79 | 65.31 |
vgg19 | 65.17 | 65.75 | 65.13 | 65.44 |
squeezenet | 62.51 | 62.55 | 62.51 | 62.53 |
Inception V3 | 71.09 | 71.69 | 71.10 | 71.39 |
Google Net | 58.40 | 58.71 | 58.36 | 58.53 |
Resnet50 L | 67.23 | 67.53 | 67.17 | 67.35 |
Resnet50 | 82.34 | 82.95 | 82.32 | 82.64 |
Features | Acc. | Pr | Re | F1 |
---|---|---|---|---|
Hist L | 21.62 | 13.69 | 14.79 | 14.22 |
Hist RGB | 47.58 | 40.33 | 39.22 | 39.77 |
3 marg. hist. | 42.86 | 33.44 | 35.22 | 34.30 |
qHist RGB | 47.89 | 40.51 | 39.82 | 40.16 |
sHist RGB | 31.61 | 31.82 | 23.60 | 27.10 |
Chrom. Mom. | 21.75 | 16.39 | 16.85 | 16.62 |
Cooc. Matr. | 9.31 | 4.80 | 4.76 | 4.78 |
SFTA | 15.52 | 10.12 | 10.12 | 10.12 |
Granulometry | 32.53 | 27.37 | 28.24 | 27.80 |
GIST | 34.70 | 29.89 | 29.24 | 29.56 |
DT-CWT | 31.71 | 26.47 | 27.56 | 27.00 |
CEDD | 28.62 | 21.96 | 22.07 | 22.02 |
HOG | 17.36 | 13.63 | 12.71 | 13.15 |
Gabor | 36.39 | 31.33 | 31.15 | 31.24 |
LBP | 33.87 | 29.82 | 29.98 | 29.90 |
LBP-nri | 38.11 | 32.04 | 31.68 | 31.86 |
LBP-LCC | 36.92 | 30.30 | 30.21 | 30.25 |
vgg16 | 70.63 | 68.01 | 66.96 | 67.48 |
vgg19 | 70.81 | 67.06 | 67.07 | 67.06 |
squeezenet | 68.09 | 62.47 | 63.62 | 63.04 |
Inception V3 | 76.73 | 71.56 | 70.65 | 71.10 |
Google Net | 64.23 | 59.70 | 59.39 | 59.55 |
Resnet50 L | 72.32 | 65.57 | 65.40 | 65.49 |
Resnet50 | 85.77 | 82.78 | 82.13 | 82.45 |
Features | Acc. | Pr | Re | F1 |
---|---|---|---|---|
Hist L | 42.36 | 38.96 | 38.06 | 38.50 |
Hist RGB | 64.92 | 63.59 | 61.82 | 62.69 |
3 marg. hist. | 62.54 | 60.19 | 59.94 | 60.07 |
qHist RGB | 65.14 | 63.70 | 62.14 | 62.91 |
sHist RGB | 52.77 | 54.80 | 47.55 | 50.92 |
Chrom. Mom. | 47.26 | 44.96 | 45.32 | 45.14 |
Cooc. Matr. | 33.79 | 32.48 | 32.60 | 32.54 |
SFTA | 40.26 | 37.61 | 37.66 | 37.63 |
Granulometry | 55.91 | 53.98 | 54.36 | 54.17 |
GIST | 56.05 | 55.06 | 53.69 | 54.37 |
DT-CWT | 56.82 | 54.81 | 54.85 | 54.83 |
CEDD | 51.44 | 49.92 | 49.68 | 49.80 |
HOG | 41.83 | 41.37 | 39.75 | 40.55 |
Gabor | 61.03 | 59.03 | 58.98 | 59.00 |
LBP | 59.99 | 57.87 | 57.86 | 57.86 |
LBP-nri | 60.89 | 59.03 | 58.12 | 58.57 |
LBP-LCC | 61.01 | 58.08 | 58.08 | 58.08 |
vgg16 | 85.86 | 84.66 | 84.50 | 84.58 |
vgg19 | 85.90 | 84.60 | 84.63 | 84.61 |
squeezenet | 83.39 | 81.50 | 81.89 | 81.70 |
Inception V3 | 89.95 | 88.74 | 88.40 | 88.57 |
Google Net | 81.32 | 79.62 | 79.41 | 79.51 |
Resnet50 L | 85.89 | 83.95 | 83.94 | 83.95 |
Resnet50 | 93.41 | 92.59 | 92.55 | 92.57 |
Features | Acc. | Pr | Re | F1 |
---|---|---|---|---|
Hist L | 4.58 | 4.92 | 4.63 | 4.77 |
Hist RGB | 11.74 | 14.32 | 11.91 | 13.00 |
3 marg. hist. | 13.20 | 15.28 | 13.45 | 14.30 |
qHist RGB | 11.92 | 14.52 | 12.08 | 13.19 |
sHist RGB | 7.06 | 9.42 | 7.27 | 8.20 |
Chrom. Mom. | 7.31 | 7.65 | 7.42 | 7.54 |
Cooc. Matr. | 1.69 | 1.90 | 1.69 | 1.79 |
SFTA | 3.62 | 4.12 | 3.69 | 3.89 |
Granulometry | 6.03 | 7.82 | 6.08 | 6.84 |
GIST | 8.89 | 12.27 | 9.04 | 10.40 |
DT-CWT | 7.86 | 9.43 | 7.98 | 8.65 |
CEDD | 9.78 | 10.86 | 9.93 | 10.37 |
HOG | 3.38 | 4.05 | 3.39 | 3.69 |
Gabor | 7.43 | 8.97 | 7.52 | 8.18 |
LBP | 6.49 | 8.46 | 6.51 | 7.36 |
LBP-nri | 6.91 | 9.89 | 6.88 | 8.12 |
LBP-LCC | 7.72 | 9.64 | 7.68 | 8.54 |
vgg16 | 27.70 | 32.86 | 27.94 | 30.20 |
vgg19 | 27.80 | 33.38 | 28.07 | 30.49 |
squeezenet | 24.38 | 27.26 | 24.57 | 25.84 |
Inception V3 | 31.88 | 39.13 | 32.15 | 35.29 |
Google Net | 24.17 | 29.12 | 24.35 | 26.52 |
Resnet50 L | 30.21 | 36.21 | 30.45 | 33.08 |
Resnet50 | 43.48 | 50.55 | 43.83 | 46.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusano, C.; Napoletano, P.; Schettini, R. T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods. Sensors 2021, 21, 1010. https://doi.org/10.3390/s21031010
Cusano C, Napoletano P, Schettini R. T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods. Sensors. 2021; 21(3):1010. https://doi.org/10.3390/s21031010
Chicago/Turabian StyleCusano, Claudio, Paolo Napoletano, and Raimondo Schettini. 2021. "T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods" Sensors 21, no. 3: 1010. https://doi.org/10.3390/s21031010
APA StyleCusano, C., Napoletano, P., & Schettini, R. (2021). T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods. Sensors, 21(3), 1010. https://doi.org/10.3390/s21031010