Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People
<p>Delsys system. (<b>a</b>) Inertial sensing Axis. (<b>b</b>) Process of data transmission.</p> "> Figure 2
<p>Module positions on the body. (<b>a</b>) Module positions on the right upper limb. (<b>b</b>) Module positions on the right lower limb. The module direction from the white blank to the black triangle was consistent with the green arrow direction on the module surface of <a href="#sensors-21-00799-f001" class="html-fig">Figure 1</a>a. The actual module placement was placed on the dominant side of healthy subjects and the affected side stroke survivors.</p> "> Figure 3
<p>Raw signals of each sensor position using the x-axis of accelerometers, x-axis of gyroscopes, and surface electromyography (sEMG). The space between red slashes on the y-axis were ignored.</p> "> Figure 4
<p>Raw signals of four activities using the x-axis of accelerometer, x-axis of gyroscope, and sEMG of US6.</p> "> Figure 5
<p>(<b>a</b>) Walking. (<b>b</b>) Tooth brushing. (<b>c</b>) Face washing. (<b>d</b>) Drinking.</p> "> Figure 6
<p>The block diagram of the assessment framework.</p> "> Figure 7
<p>Best human activity recognition (HAR) accuracies (mean ± standard error) using the accelerometer, gyroscope, sEMG collector, and the combination of three kinds of sensors in one delsys module within groups of stroke survivors, group of healthy subjects, and all subjects under the first scenario, and the second scenario. The sensor abbreviation at the bottom of the bar graph denotes the sensor achieving the highest accuracy. The line connection between two sensors indicates there is a significant difference between the two items, and the corresponding <span class="html-italic">p</span>-value is shown above the line. No significant difference (<span class="html-italic">p</span> > 0.05) is detected between two items if there is no line connection.</p> "> Figure 8
<p>Overall confusion matrix using the accelerometer of US6 for the group of all subjects. W denotes walking; TB denotes tooth brushing; FW denotes face washing; D: denotes drinking.</p> "> Figure 9
<p>Feature distances for the inter-individual and inter-activity differences.</p> ">
Abstract
:1. Introduction
- A comprehensive survey on human activity recognition along with various prevailing sensors, namely, the accelerometer, the gyroscope, and sEMG, was investigated.
- The optimal position of each sensor that can obtain satisfactory performance in HAR was provided.
- The feasibility of a pre-trained HAR model built on healthy people for distinguishing the activities of stroke survivors was verified.
2. Materials and Methods
2.1. Materials
2.1.1. Subject Information
- Abilities to complete ADLs involved in this experiment independently without any assistant.
- No perceptual, cognitive, or communication problem.
- No major post-stroke complication.
2.1.2. Data Collection
- Walking: subjects walked straight at their normal walking speed without any assisted tools, such as the stick.
- Tooth brushing: subjects kept brushing their teeth without a break.
- Face washing: two steps were taken to fulfill a round of washing face. The first step was to clean the towel, lasting about 2 s. The second step was to wash the face, lasting about 3 s. The two steps were repeated until the end of the scheduled time.
- Drinking: Subjects picked up the cup to drink. The duration of drinking lasted about 2 s. Then, subjects put down the cup on the table and started to pick up the cup to drink 1 s later.
2.2. Methods
2.2.1. Data Pre-Processing
2.2.2. Feature Extraction
2.2.3. Imbalanced Data Processing
2.2.4. Classification
2.2.5. Statistics Analysis
3. Results
3.1. Comparison of Different Classifiers
3.2. Analyses of the First Scenario
3.3. Analyses of the Second Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BS | Brunnstrom stage |
HAR | human activity recognition |
ADLs | activities of daily living |
sEMG | surface electromyography |
ACC | accelerometer |
GYRO | gyroscope |
COMB | combination |
SMOTE | Synthetic Minority Oversampling Technique |
mRMR | minimum-redundancy maximum-relevancy |
LOSOCV | Leave-One-Subject-Out Cross-Validation |
SVM | Support Vector Machine |
RBF | Radial Basis Function |
MI | mutual information |
MID | Mutual Information Difference |
W | walking |
TB | tooth brushing |
FW | face washing |
D | drinking |
References
- Singh, M.; Pandey, P.K.; Bhasin, A.; Padma, M.V.; Mohanty, S. Application of Stem Cells in Stroke: A Multifactorial Approach. Front. Neurosci. 2020, 14, 473. [Google Scholar] [CrossRef] [PubMed]
- Kothari, R.; Sauerbeck, L.; Jauch, E.; Broderick, J.; Liu, T.P. Patients’ awareness of stroke signs, symptoms, and risk factors. Stroke 1997, 28, 1871–1875. [Google Scholar] [CrossRef] [PubMed]
- Zambrana, C.; Idelsohn-Zielonka, S.; Claramunt-Molet, M.; Almenara-Masbernat, M.; Vargiu, E. A hierarchical approach to recognize purposeful movements using inertial sensors: Preliminary experiments and results. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May 2017; pp. 335–341. [Google Scholar]
- Nouri, F.; Lincoln, N. An extended activities of daily living scale for stroke patients. Clin. Rehabil. 1987, 1, 301–305. [Google Scholar] [CrossRef]
- Majumder, S.; Deen, M.J. Smartphone sensors for health monitoring and diagnosis. Sensors 2019, 19, 2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, S.; Deen, M.J. A Robust Orientation Filter for Wearable Sensing Applications. IEEE Sens. J. 2020, 20, 14228–14236. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens. J. 2018, 19, 2320–2329. [Google Scholar] [CrossRef]
- Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer Learning for Activity Recognition: A Survey. Knowl. Inf. Syst. 2013, 36, 537–556. [Google Scholar] [CrossRef] [Green Version]
- Poppe, R. A survey on vision-based human action recognition. Image Vis. Comput. 2010, 28, 976–990. [Google Scholar] [CrossRef]
- Guiry, J.J.; Ven, P.V.D.; Nelson, J.; Warmerdam, L.; Riper, H. Activity recognition with smartphone support. Med. Eng. Phys. 2014, 36, 670–675. [Google Scholar] [CrossRef]
- Gu, T.; Chen, S.; Tao, X.; Lu, J. An unsupervised approach to activity recognition and segmentation based on object-use fingerprints. Data Knowl. Eng. 2010, 69, 533–544. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, X.; Shen, M. A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals. IEEE J. Biomed. Health Inform. 2013, 17, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Yang, C.; Shi, J.; Luo, Z.; Zhao, Y.B. Surface Electromyography-Based Daily Activity Recognition Using Wavelet Coherence Coefficient and Support Vector Machine. Neural Process. Lett. 2019, 50, 2265–2280. [Google Scholar] [CrossRef]
- Wu, G.; Xue, S. Portable Preimpact Fall Detector With Inertial Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 178–183. [Google Scholar] [PubMed]
- Gao, L.; Bourke, A.K.; Nelson, J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 2014, 36, 779–785. [Google Scholar] [CrossRef]
- Banos, O.; Toth, M.; Damas, M.; Pomares, H.; Rojas, I. Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition. Sensors 2014, 14, 9995–10023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013, 15, 1192–1209. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, X.; Sheng, M.; Jin, J.; Yu, S. Efficient human activity recognition using a single wearable sensor. IEEE Internet Things J. 2020, 7, 11137–11146. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, X.; Chen, W.; Liu, Z.; Li, L. Adaptive multiple classifiers fusion for inertial sensor based human activity recognition. Clust. Comput. 2019, 22, 8141–8154. [Google Scholar] [CrossRef]
- Mane, S.M.; Kambli, R.A.; Kazi, F.S.; Singh, N.M. Hand Motion Recognition from Single Channel Surface EMG Using Wavelet & Artificial Neural Network. Procedia Comput. Sci. 2015, 49, 58–65. [Google Scholar]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olguın, D.O.; Pentland, A.S. Human activity recognition: Accuracy across common locations for wearable sensors. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 11–14. [Google Scholar]
- Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity recognition and monitoring using multiple sensors on different body positions. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 99–102. [Google Scholar]
- Liparulo, L.; Zhang, Z.; Panella, M.; Gu, X.; Fang, Q. A novel fuzzy approach for automatic Brunnstrom stage classification using surface electromyography. Med. Biol. Eng. Comput. 2017, 55, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fang, Q.; Gu, X. Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Syst. Appl. 2014, 41, 1973–1980. [Google Scholar] [CrossRef]
- Xiong, A.; Guangmo, L.; Zhao, X.; Han, J.; Liu, G. Feasibility of EMG-based ANN controller for a real-time virtual reality simulation. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 2699–2704. [Google Scholar]
- Majid, J.; Atena, R.F.; Katarzyna, R.; Zeljko, Z. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Sensors 2017, 17, 529. [Google Scholar]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Asim, W.; Nlandu, K.E. Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG. Biomed. Signal Process. Control 2018, 45, 267–273. [Google Scholar]
- Sunil Babu, M.; Vijayalakshmi, V. An Effective Approach for Sub-acute Ischemic Stroke Lesion Segmentation by Adopting Meta-Heuristics Feature Selection Technique Along with Hybrid Naive Bayes and Sample-Weighted Random Forest Classification. Sens. Imaging 2019, 20, 7. [Google Scholar] [CrossRef]
- Liu, C.; Ying, W.; Hao, D.; Yao, R.; Lin, Y.; Song, Z.; Zheng, D. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects. BioMed Res. Int. 2017, 2017, 8943850. [Google Scholar]
- Ramasso, E.; Placet, V.; Boubakar, M.L. Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites. IEEE Trans. Instrum. Meas. 2015, 64, 3297–3307. [Google Scholar] [CrossRef] [Green Version]
- Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J.M.; Lummel, R.C.V.; Chiari, L. Comparison of acceleration signals of simulated and real-world backward falls. Med. Eng. Phys. 2011, 33, 368–373. [Google Scholar] [CrossRef]
- Huang, J.; Hu, P.; Wu, K.; Zeng, M. Optimal time-jerk trajectory planning for industrial robots. Mech. Mach. Theory 2018, 121, 530–544. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Tan, X.; Su, S.; Huang, Z.; Guo, X.; Zuo, Z. Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm. Sensors 2019, 9, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [Google Scholar] [CrossRef]
- Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Alo, U.R.; Al-garadi, M.A. Multi-sensor fusion based on multiple classifier systems for human activity identification. Hum. Centric Comput. Inf. Sci. 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, F.; Ouarbya, L.; Ward, J.A. Synthetic Sensor Data for Human Activity Recognition. In Proceedings of the IEEE IJCNN, Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Castro, D.; Coral, W.; Rodriguez, C.; Cabra, J.; Colorado, J. Wearable-based human activity recognition using an iot approach. J. Sens. Actuator Netw. 2017, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Bayliff, A.; De, D.; Evans, A.; Das, S.K.; Makos, M. Care-chair: Sedentary activities and behavior assessment with smart sensing on chair backrest. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; pp. 1–8. [Google Scholar]
- Xu, L.; Yang, W.; Cao, Y.; Li, Q. Human activity recognition based on random forests. In Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017; pp. 548–553. [Google Scholar]
- Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In Proceedings of the 2010 5th International Conference on Future Information Technology, Busan, Korea, 20–24 May 2010; pp. 1–6. [Google Scholar]
- Suto, J.; Oniga, S. Efficiency investigation of artificial neural networks in human activity recognition. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1049–1060. [Google Scholar] [CrossRef]
- Shen, J.; Fang, H. Human Activity Recognition Using Gaussian Naïve Bayes Algorithm in Smart Home. J. Phys. Conf. Ser. 2020, 1631, 012059. [Google Scholar] [CrossRef]
- Reyes-Ortiz, J.L.; Oneto, L.; Samà, A.; Parra, X.; Anguita, D. Transition-aware human activity recognition using smartphones. Neurocomputing 2016, 171, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Gallego, S.; Lastra, I.; Martínez-Rego, D.; Bolón-Canedo, V.; Benítez, J.M.; Herrera, F.; Alonso-Betanzos, A. Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data. Int. J. Intell. Syst. 2017, 32, 134–152. [Google Scholar] [CrossRef]
- Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 1994, 5, 537–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Maaten, L.V.D.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Potluri, C.; Kumar, P.; Anugolu, M.; Chiu, S.; Urfer, A.; Schoen, M.P.; Naidu, D.S. sEMG based fuzzy control strategy with ANFIS path planning for prosthetic hand. In Proceedings of the 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 413–418. [Google Scholar]
- Chen, G.; Wang, W.; Wang, Z.; Liu, H.; Li, W. Two-dimensional discrete feature based spatial attention CapsNet For sEMG signal recognition. Appl. Intell. 2020, 50, 3503–3520. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, K.; Liu, X.; Dai, C.; Chen, W. Neuromuscular Password-based User Authentication. IEEE Trans. Ind. Inform. 2020, 17, 2641–2652. [Google Scholar] [CrossRef]
- Canning, C.G.; Ada, L.; Adams, R.; O’Dwyer, N.J. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin. Rehabil. 2004, 18, 300. [Google Scholar] [CrossRef]
- Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.M.; Clancy, E.A.; Fischer, G.S. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–7. [Google Scholar]
- Zhang, T.; Fulk, G.D.; Tang, W.; Sazonov, E.S. Using decision trees to measure activities in people with stroke. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6337–6340. [Google Scholar]
- Laudanski, A.; Brouwer, B.; Li, Q. Activity classification in persons with stroke based on frequency features. Med. Eng. Phys. 2015, 37, 180–186. [Google Scholar] [CrossRef]
- Lonini, L.; Gupta, A.; Kording, K.; Jayaraman, A. Activity recognition in patients with lower limb impairments: Do we need training data from each patient? In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3265–3268. [Google Scholar]
Muscle | Sensor | Muscle | Sensor |
---|---|---|---|
Deltoid (anterior part) | US1 | Tensor fasciae latae | LS1 |
Biceps brachii (short head) | US3 | Rectus femoris | LS3 |
Brachioradialis | US5 | Tibialis anterior | LS5 |
Deltoid (posterior part) | US2 | Gluteus maximus | LS2 |
Triceps lateral head | US4 | Biceps femoris longus | LS4 |
Extensor carpi ulnaris | US6 | Gastrocnemius lateral | LS6 |
Classifier | Stroke Survivors | Healthy Subjects | All Subjects | Second Scenario | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sEMG | GYRO | ACC | COMB | sEMG | GYRO | ACC | COMB | sEMG | GYRO | ACC | COMB | sEMG | GYRO | ACC | COMB | |
KNN | 68.08 (3.17) | 69.87 (5.66) | 89.59 (3.64) | 90.81 (3.18) | 88.19 (3.91) | 92.96 (2.09) | 96.23 (2.41) | 96.63 (2.3) | 76.76 (3.99) | 83.97 (2.96) | 92.85 (1.91) | 93.52 (1.79) | 67.05 (4.55) | 71.99 (5.88) | 70.55 (4.79) | 75.94 (4.96) |
DT | 64.59 (2.84) | 67.95 (3.91) | 90.64 (3.49) | 90.57 (3.14) | 87.8 (3.33) | 90.97 (2.4) | 95.83 (2.46) | 95.34 (2.28) | 78.56 (3.91) | 82.31 (2.92) | 91.12 (1.82) | 94.34 (1.63) | 69.86 (4.26) | 70.85 (4.66) | 72.53 (5.75) | 72.9 (2.78) |
AdaBoost | 63.98 (5.17) | 71.22 (4.03) | 85.68 (2.37) | 86.6 (3.35) | 82.44 (3.95) | 88.29 (2.64) | 96.73 (2.11) | 95.54 (2.44) | 72.33 (3.31) | 83.5 (2.78) | 87.82 (2.42) | 89.85 (2.0) | 66.48 (3.77) | 70.0 (5.65) | 77.29 (3.86) | 75.93 (4.18) |
RF | 67.99 (2.76) | 72.64 (5.51) | 92.14 (3.23) | 92.45 (3.01) | 86.41 (3.97) | 92.56 (2.27) | 96.33 (2.42) | 96.53 (2.29) | 77.6 (4.05) | 84.31 (2.99) | 93.73 (1.78) | 94.43 (1.59) | 69.18 (6.06) | 74.29 (5.12) | 76.41 (5.2) | 74.37 (6.19) |
LDA | 70.33 (5.29) | 74.8 (4.86) | 91.29 (3.5) | 92.94 (3.69) | 87.5 (3.59) | 92.96 (2.43) | 96.23 (2.41) | 96.53 (2.13) | 78.13 (3.84) | 84.62 (2.89) | 92.98 (2.37) | 94.73 (1.95) | 70.27 (4.78) | 71.42 (6.25) | 73.73 (6.76) | 74.7 (2.97) |
ANN | 67.74 (3.2) | 74.38 (5.83) | 91.82 (2.99) | 93.42 (2.78) | 88.29 (3.64) | 92.96 (2.28) | 96.23 (2.51) | 96.73 (1.95) | 79.94 (4.0) | 85.5 (2.85) | 94.48 (1.85) | 95.95 (1.52) | 72.35 (3.82) | 75.12 (6.17) | 74.78 (5.09) | 77.75 (5.09) |
GNB | 68.03 (1.83) | 71.69 (4.67) | 90.38 (3.29) | 91.46 (3.69) | 85.32 (4.15) | 89.58 (2.71) | 94.94 (2.81) | 96.33 (2.57) | 75.78 (4.03) | 82.22 (2.91) | 87.62 (3.01) | 91.23 (2.17) | 68.42 (4.9) | 72.0 (4.92) | 67.02 (3.42) | 72.83 (3.92) |
SVM-Linear | 71.16 (4.63) | 72.23 (5.17) | 91.18 (3.18) | 92.58 (3.07) | 86.9 (3.96) | 93.45 (2.23) | 96.13 (2.56) | 97.82 (1.8) | 78.74 (4.04) | 85.13 (2.71) | 94.51 (2.07) | 95.85 (1.65) | 70.52 (4.89) | 73.99 (5.77) | 72.23 (5.59) | 77.7 (4.41) |
SVM-RBF | 73.77 (3.73) | 75.88 (5.53) | 94.05 (3.1) | 94.22 (2.63) | 90.87 (3.41) | 94.54 (2.06) | 96.43 (2.35) | 96.53 (2.36) | 84.09 (3.33) | 87.95 (2.79) | 95.84 (1.75) | 96.56 (1.55) | 76.34 (3.75) | 76.82 (5.55) | 77.89 (4.81) | 82.47 (4.18) |
Sensor | US6 (95.84) | US5 (94.92) | LS3 (90.72) | LS4 (89.19) | US3 (88.52) | US1 (87.58) | US4 (87.58) | US2 (86.17) | LS2 (85.44) | LS6 (84.85) | LS5 (83.08) | LS1 (82.45) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
US6 | - | ** | *** | *** | ** | *** | ** | ** | *** | *** | ||
US5 | - | - | * | ** | *** | ** | *** | ** | ** | *** | *** | |
LS3 | - | - | - | * | ** | * | ** | *** | ||||
LS4 | - | - | - | - | * | * | * | * | ||||
US3 | - | - | - | - | - | * | * | |||||
US1 | - | - | - | - | - | - | * | |||||
US4 | - | - | - | - | - | - | - | * | ||||
US2 | - | - | - | - | - | - | - | - | ||||
LS2 | - | - | - | - | - | - | - | - | - | |||
LS6 | - | - | - | - | - | - | - | - | - | - | ||
LS5 | - | - | - | - | - | - | - | - | - | - | - | |
LS1 | - | - | - | - | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Zhang, A.; Chen, C.; Wang, X.; Jiang, X.; Tao, L.; Fan, J.; Wu, X.; Dai, C.; Zhang, Y.; et al. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People. Sensors 2021, 21, 799. https://doi.org/10.3390/s21030799
Meng L, Zhang A, Chen C, Wang X, Jiang X, Tao L, Fan J, Wu X, Dai C, Zhang Y, et al. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People. Sensors. 2021; 21(3):799. https://doi.org/10.3390/s21030799
Chicago/Turabian StyleMeng, Long, Anjing Zhang, Chen Chen, Xingwei Wang, Xinyu Jiang, Linkai Tao, Jiahao Fan, Xuejiao Wu, Chenyun Dai, Yiyuan Zhang, and et al. 2021. "Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People" Sensors 21, no. 3: 799. https://doi.org/10.3390/s21030799
APA StyleMeng, L., Zhang, A., Chen, C., Wang, X., Jiang, X., Tao, L., Fan, J., Wu, X., Dai, C., Zhang, Y., Vanrumste, B., Tamura, T., & Chen, W. (2021). Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People. Sensors, 21(3), 799. https://doi.org/10.3390/s21030799