Strength Training Characteristics of Different Loads Based on Acceleration Sensor and Finite Element Simulation
<p>Software analysis interface.</p> "> Figure 2
<p>The working interface of the sensor.</p> "> Figure 3
<p>Subject information collection chart.</p> "> Figure 4
<p>Comparisons of the different load intensity test angles (°). * There was a significant difference between 40% 1RM (One repetition maximum testing) and 80% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Comparisons of the different load intensity test angular velocities (°/s). * There was a significant difference between 40% 1RM and 80% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Comparisons of the different load intensity test angular accelerations (°/s<sup>2</sup>). * There was a significant difference between 40% 1RM and 80% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Comparisons of the different load intensity test peak stress (N). * There was a significant difference between 40% 1RM and 80% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Comparisons of the different load intensity test peak muscle strength (N). * There was a significant difference between 40% 1RM and 80% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Comparisons of the different force on knee joint (N). * There was a significant difference between 40% 1RM and 80% 1RM (<span class="html-italic">p</span> < 0.05). <sup>★</sup> There was a significant difference between 40% 1RM and 60% 1RM (<span class="html-italic">p</span> < 0.05).</p> "> Figure 10
<p>Cloud chart of tibia stress distribution of deep squat.</p> "> Figure 11
<p>Cloud chart of tibia stress distribution of hard pull.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Process
2.2.1. Data Acquisition
2.2.2. AnyBody Simulation Operation
2.2.3. Finite Element Analysis Operation
2.3. Statistical Treatment
3. Results
3.1. Kinematic Characteristics of the Different Load Strength Tests
3.1.1. Peak Results of Different Load Intensity Test Angles
3.1.2. Peak Characteristics of the Angular Velocity as Measured by Different Load Intensities
3.1.3. Peak Angular Acceleration Results of the Different Load Intensities
3.2. Dynamic Characteristics of Different Load Strength Tests
3.2.1. Stress of Different Load Strength Tests
3.2.2. Torque of Different Load Strength Tests
3.2.3. AnyBody Simulation Results
3.2.4. Finite Element Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenberger, M.E.; Buman, M.P.; Haskell, W.L.; McConnell, M.V.; Carstensen, L.L. Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med. Sci. Sports Exerc. 2016, 48, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Leung, W.C.; Case, L.K.; Yun, J. Not all are created equal: A meta-analysis of wearable devices for tracking physical activity. Med. Sci. Sports Exerc. 2018, 50, 673. [Google Scholar] [CrossRef]
- Plasqui, G.; Bonomi, A.G.; Westerterp, K.R. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes. Rev. 2013, 14, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Samsonova, A.G.; Ponomarev, G.N.; Tsipin, L.L. Strength training biomechanics concept for athletic training systems. Teor. Prak. Fiz. Kult. 2018, 8, 65–66. [Google Scholar]
- Mcbride, J.M.; Skinner, J.W.; Schafer, P.C.; Haines, T.L.; Kirby, T.J. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J. Strength Cond. Res. 2010, 24, 3195–3199. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Collins, J.; Longhurst, G.; Roschel, H.; Gualano, B. Resistance training and co-supplementation with creatine and protein in older subjects with frailty. J. Frailty Aging 2016, 5, 126–134. [Google Scholar] [PubMed]
- Hughes, L.J.; Jeremiah, J.P.; Scott, B.R. Load-velocity relationship 1RM predictions: A comparison of Smith machine and free-weight exercise. J. Sports Sci. 2020, 38, 2562–2568. [Google Scholar] [CrossRef]
- Rasmussen, P.; Damsgaard, M.; Voigt, M. Muscle recruitment by the min/max criterion—A comparative numerical study. J. Biomech. 2001, 34, 409–415. [Google Scholar] [CrossRef]
- Saraswat, P.; Andersen, M.S.; MacWilliams, B.A. A musculoskeletal foot model for clinical gait analysis. J. Biomech. 2010, 43, 1645–1652. [Google Scholar] [CrossRef]
- Small, S.R.; Berend, M.E.; Rogge, R.D.; Archer, D.B.; Kingman, A.L.; Ritter, M.A. Tibial loading after UKA: Evaluation of tibial slope, resection depth, medial shift and component rotation. J. Arthroplast. 2013, 28, 179–183. [Google Scholar] [CrossRef]
- Hopkins, A.R.; Mew, A.M.; Rodriguez-y-Baena, F.; Taylor, M. Finite element analysis of unicompartmental knee arthroplasty. Med. Eng. Phys. 2010, 32, 14–21. [Google Scholar] [CrossRef]
- Burkhart, T.A.; Andrews, D.M.; Dunning, C.E. Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. J. Biomech. 2013, 46, 1477–1488. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kraemer, J.W.; Blimkie, J.R.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 2009, 23, 60–79. [Google Scholar] [CrossRef]
- Walilko, T.J.; Viano, D.C.; Bir, C.A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 2005, 39, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Calatayud, J.; Vinstrup, J.; Jakobsen, M.D.; Sundstrup, E.; Colado, J.C.; Andersen, L.L. Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds. J. Sports Sci. 2017, 36, 1162–1166. [Google Scholar] [CrossRef]
- Sakamoto, A.; Sinclair, P.J. Muscle activations under varying lifting speeds and intensities during bench press. Eur. J. Appl. Physiol. 2012, 112, 1015–1025. [Google Scholar] [CrossRef]
- Yamanaka, T.; Farley, R.S.; Caputo, J.L. Occlusion training increases muscular strength in division IA football players. J. Strength Cond. Res. 2012, 26, 2523–2529. [Google Scholar] [CrossRef]
- García-Ramos, A.; Haff, G.G.; Padial, P.; Feriche, B. Optimal load for maximizing upper-body power: Test-retest reproducibility. Isokinet. Exerc. Sci. 2016, 24, 115–124. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Effect of various loads on the force-time characteristics of the hang high pull. J. Strength Cond. Res. 2015, 29, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
Deep Squat | Bench Press | Hard Pull | |||||||
---|---|---|---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
CF | 13.5 ± 1.0 | 13.5 ± 1.1 | 13.6 ± 1.6 | 1.4 ± 0.1 | 1.4 ± 0.3 | 1.49 ± 0.09 | 13.1 ± 4.3 | 13.3 ± 5.6 | 13.3 ± 6.5 |
CE | 28.5 ± 5.6 | 28.7 ± 5.4 | 28.9 ± 6.3 | 1.3 ± 0.2 | 1.3 ± 0.2 | 1.32 ± 0.29 | 26.0 ± 8.2 | 26.1 ± 8.0 | 26.1 ± 7.3 |
TF | 24.7 ± 3.7 | 24.8 ± 3.2 | 24.8 ± 3.0 | 1.8 ± 0.2 | 1.8 ± 0.2 | 1.92 ± 0.2 | 20.8 ± 2.4 | 21.3 ± 3.1 | 21.6 ± 4.2 |
TE | 35.6 ± 4.8 | 36.7 ± 5.6 | 36.9 ± 5.2 | 1.5 ± 0.4 | 1.5 ± 0.3 | 1.64 ± 0.6 | 33.5 ± 3.9 | 33.6 ± 4.5 | 33.7 ± 3.6 |
SF | 55.6 ± 10.2 | 55.6 ± 6.3 | 55.7 ± 7.8 | 16.2 ± 9.0 | 17.8 ± 9.9 | 17.9 ± 8.9 | 50.2 ± 5.6 | 52.6 ± 14.3 | 53.2 ± 8.4 |
SE | 53.0 ± 5.9 | 55.4 ± 4.8 | 55.6 ± 4.3 | 16.2 ± 10.6 | 16.3 ± 8.0 | 17.3 ± 2.1 | 53.3 ± 1.5 | 53.4 ± 1.0 | 53.4 ± 1.2 |
EF | 45.5 ± 8.3 | 45.6 ± 7.5 | 45.7 ± 7.9 | 168.0 ± 18.5 | 168.2 ± 6.6 | 168.2 ± 9.3 | 40.3 ± 5.9 | 40.3 ± 6.6 | 40.3 ± 5.0 |
EE | 43.0 ± 10.2 | 43.1 ± 6.7 | 43.2 ± 8.0 | 160.2 ± 17.2 | 163.5 ± 7.4 | 175.7 ± 8.9 | 49.7 ± 8.5 | 49.2 ± 8.1 | 49.5 ± 8.6 |
HF | 137.2 ± 10.3 | 148.7 ± 18.6 | 155.3 ± 9.4 * | 35.8 ± 6.9 | 39.5 ± 8.6 | 40.8 ± 8.6 | 126.8 ± 8.9 | 133.4 ± 10.3 | 141.9 ± 7.2 * |
HE | 136.7 ± 15.6 | 137.8 ± 12.1 | 138.9 ± 8.3 | 30.5 ± 6.3 | 32.8 ± 5.0 | 33.7 ± 6.9 | 130.4 ± 9.8 | 133.6 ± 10.2 | 142.8 ± 9.3 |
KF | 81.6 ± 7.8 | 89.3 ± 10.6 | 99.4 ± 8.8 * | 34.9 ± 9.5 | 36.3 ± 10.3 | 37.8 ± 8.6 | 81.3 ± 7.3 | 89.2 ± 9.4 | 94.5 ± 6.9 * |
KE | 82.3 ± 10.2 | 85.6 ± 15.5 | 86.3 ± 9.7 | 35.2 ± 8.5 | 36.4 ± 7.2 | 35.9 ± 8.1 | 82.1 ± 10.9 | 84.7 ± 8.3 | 85.4 ± 10.2 |
Deep Squat | Bench Press | Hard Pull | |||||||
---|---|---|---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
CF | 3.0 ± 0.5 | 2.6 ± 0.6 | 2.8 ± 0.4 | 3.3 ± 0.9 | 3.5 ± 0.9 | 3.8 ± 0.9 | 2.4 ± 0.6 | 2.3 ± 0.6 | 2.8 ± 0.6 |
CE | 3.5 ± 0.8 | 2.7 ± 0.8 | 3.0 ± 0.5 | 3.8 ± 0.8 | 3.6 ± 0.8 | 3.5 ± 0.9 | 2.3 ± 0.7 | 2.6 ± 0.8 | 2.6 ± 0.9 |
TF | 5.4 ± 0.6 | 4.8 ± 1.0 | 4.1 ± 0.8 * | 1.8 ± 0.9 | 1.9 ± 0.8 | 2.0 ± 1.0 | 10.4 ± 2.0 | 11.5 ± 2.1 | 11.1 ± 2.0 |
TE | 5.9 ± 0.5 | 5.0 ± 1.1 | 4.7 ± 0.7 * | 1.9 ± 0.8 | 1.9 ± 0.9 | 2.1 ± 0.9 | 10.1 ± 2.7 | 11.9 ± 2.0 | 11.6 ± 2.8 |
SF | 10.1 ± 2.0 | 10.2 ± 2.0 | 10.1 ± 2.0 | 10.0 ± 2.3 | 11.6 ± 2.6 | 12.8 ± 3.5 | 13.4 ± 3.0 | 13.2 ± 2.1 | 13.2 ± 3.3 |
SE | 10.2 ± 2.4 | 10.1 ± 2.4 | 9.7 ± 2.3 | 10.4 ± 1.2 | 11.6 ± 2.5 | 12.9 ± 1.3 * | 13.3 ± 3.3 | 13.3 ± 2.0 | 13.5 ± 3.1 |
EF | 5.9 ± 1.2 | 5.7 ± 1.1 | 5.6 ± 1.2 | 9.6 ± 2.7 | 9.6 ± 1.5 | 10.7 ± 2.6 | 12.2 ± 3.4 | 11.0 ± 2.1 | 12.2 ± 1.5 |
EE | 5.9 ± 1.0 | 5.7 ± 1.0 | 5.7 ± 1.0 | 10.4 ± 2.3 | 10.5 ± 2.4 | 10.2 ± 2.4 | 12.9 ± 3.2 | 11.1 ± 2.0 | 12.1 ± 1.0 |
HF | 10.5 ± 2.5 | 11.5 ± 3.6 | 12.2 ± 3.6 | 7.3 ± 2.9 | 8.3 ± 2.0 | 8.4 ± 3.1 | 10.2 ± 3.9 | 10.2 ± 3.5 | 10.3 ± 3.5 |
HE | 11.0 ± 2.6 | 11.42 ± 3.4 | 12.3 ± 3.3 | 6.4 ± 2.3 | 7.3 ± 2.3 | 7.6 ± 2.4 | 9.4 ± 3.2 | 10.0 ± 3.8 | 10.6 ± 3.2 |
KF | 12.4 ± 3.7 | 12.9 ± 3.7 | 13.6 ± 3.8 | 7.43 ± 2.4 | 7.4 ± 2.5 | 7.3 ± 2.4 | 13.7 ± 1.8 | 11.6 ± 3.0 | 10.9 ± 1.2 * |
KE | 12.5 ± 3.3 | 12.8 ± 3.5 | 12.9 ± 3.5 | 7.4 ± 2.0 | 7.5 ± 2.0 | 7.5 ± 2.0 | 18.1 ± 3.5 | 17.2 ± 3.3 | 16.2 ± 2.1 |
Deep Squat | Bench Press | Hard Pull | |||||||
---|---|---|---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
CF | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
CE | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.3 ± 0.2 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.3 ± 0.1 |
TF | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
TE | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 | 1.6 ± 0.3 | 1.6 ± 0.3 | 1.6 ± 0.2 |
SF | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.9 ± 0.5 | 0.9 ± 0.4 | 0.9 ± 0.4 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
SE | 2.7 ± 0.7 | 2.8 ± 0.8 | 2.8 ± 0.8 | 0.9 ± 0.2 | 0.9 ± 0.2 | 1.0 ± 0.3 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
EF | 1.8 ± 0.4 | 1.9 ± 0.6 | 1.9 ± 0.5 | 2.3 ± 1.5 | 2.5 ± 1.3 | 2.6 ± 0.4 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
EE | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 2.5 ± 0.4 | 2.9 ± 0.4 | 3.4 ± 0.5 * | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
HF | 4.7 ± 0.5 | 5.1 ± 0.9 | 5.6 ± 0.4 * | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.2 | 2.2 ± 0.3 | 2.2 ± 0.3 | 2.3 ± 0.5 |
HE | 4.6 ± 0.9 | 4.6 ± 0.8 | 4.6 ± 0.9 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 3.9 ± 1.0 | 3.9 ± 1.2 | 4.0 ± 1.3 |
KF | 4.2 ± 1.5 | 4.3 ± 1.0 | 4.3 ± 1.2 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 4.1 ± 0.3 | 4.5 ± 0.6 | 4.8 ± 0.4 * |
KE | 4.4 ± 1.1 | 4.4 ± 0.7 | 4.6 ± 0.9 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 3.9 ± 0.9 | 4.0 ± 0.8 | 4.1 ± 1.2 |
Deep Squat | Bench Press | Hard Pull | |||||||
---|---|---|---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
Cervical | 32.6 ± 5.8 | 35.7 ± 6.4 | 35.5 ± 7.6 | 13.6 ± 4.2 | 12.1 ± 3.4 | 11.5 ± 4.6 | 17.6 ± 4.3 | 18.4 ± 3.6 | 18.9 ± 4.7 |
Trunk | 165.3 ± 10.2 | 167.4 ± 13.6 | 167.7 ± 9.3 | 94.4 ± 16.5 | 93.5 ± 19.1 | 91.3 ± 20.4 | 371.3 ± 56.3 | 378.3 ± 67.9 | 382.1 ± 71.4 |
Shoulder | 297.5 ± 52.3 | 295.8 ± 54.1 | 298.7 ± 55.6 | 575.7 ± 50.9 | 573.6 ± 48.5 | 561.9 ± 52.6 | 162.9 ± 74.3 | 163.5 ± 86.4 | 169.5 ± 10.9 |
Elbow | 228.9 ± 75.3 | 223.6 ± 87.4 | 221.4 ± 72.3 | 439.6 ± 42.7 | 436.7 ± 53.4 | 430.2 ± 46.2 | 56.3 ± 10.9 | 58.6 ± 14.8 | 59.3 ± 9.6 |
Hip | 495.3 ± 28.9 | 465.9 ± 50.6 | 445.6 ± 22.5 * | 151.5 ± 23.2 | 147.3 ± 38.2 | 145.6 ± 25.5 | 434.6 ± 35.2 | 456.7 ± 34.3 | 498.5 ± 32.6 * |
Knee | 566.5 ± 21.3 | 543.6 ± 58.7 | 520.8 ± 23.4 * | 120.6 ± 25.6 | 113.7 ± 32.5 | 110.8 ± 35.7 | 432.3 ± 34.6 | 475.4 ± 29.7 | 493.2 ± 29.1 * |
Deep Squat | Bench Press | Hard Pull | |||||||
---|---|---|---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
Cervical | 5.6 ± 1.5 | 5.7 ± 1.6 | 5.8 ± 1.0 | 4.8 ± 1.2 | 4.7 ± 0.8 | 4.3 ± 1.6 | 5.3 ± 1.8 | 5.9 ± 1.6 | 5.9 ± 1.5 |
Trunk | 8.3 ± 2.8 | 9.4 ± 3.5 | 9.6 ± 5.9 | 13.1 ± 3.8 | 12.8 ± 4.2 | 11.6 ± 3.4 | 19.7 ± 4.3 | 17.4 ± 5.8 | 18.5 ± 6.7 |
Shoulder | 13.5 ± 4.8 | 13.8 ± 4.5 | 11.6 ± 5.9 | 27.6 ± 1.3 | 23.7 ± 1.2 | 20.9 ± 1.1 | 13.2 ± 2.7 | 13.8 ± 2.3 | 13.9 ± 2.1 |
Elbow | 14.2 ± 5.6 | 14.3 ± 4.2 | 14.3 ± 6.3 | 28.3 ± 2.5 | 25.5 ± 2.6 | 22.3 ± 3.9 * | 10.7 ± 4.6 | 11.7 ± 4.2 | 11.8 ± 4.2 |
Hip | 26.5 ± 3.4 | 23.7 ± 5.5 | 20.4 ± 3.1 * | 12.3 ± 2.6 | 10.5 ± 3.4 | 10.2 ± 4.0 | 23.4 ± 7.9 | 23.6 ± 6.8 | 23.1 ± 7.7 |
Knee | 27.1 ± 8.3 | 25.9 ± 7.6 | 23.9 ± 8.3 | 13.8 ± 5.9 | 12.9 ± 3.5 | 12.6 ± 4.3 | 20.9 ± 2.8 | 23.7 ± 3.3 | 26.5 ± 3.2 * |
Deep Squat | Hard Pull | |||||
---|---|---|---|---|---|---|
40% 1RM | 60% 1RM | 80% 1RM | 40% 1RM | 60% 1RM | 80% 1RM | |
x-axis force | 30.93 ± 3.40 | 33.46 ± 3.91 | 37.32 ± 3.36 * | 9.25 ± 3.39 | 10.65 ± 1.42 | 12.84 ± 3.20 |
y-axis force | 229.25 ± 17.62 | 280.37 ± 20.38 ★ | 290.36 ± 26.53 * | 453.13 ± 30.46 | 489.17 ± 40.31 | 517.21 ± 40.05 |
z-axis force | 37.91 ± 6.34 | 50.58 ± 7.44 ★ | 55.91 ± 5.46 * | 41.54 ± 3.52 | 45.42 ± 4.38 | 49.93 ± 4.56 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, B.; Ji, Z.; Zhang, Z.; Sun, Y.; Ma, C.; He, Z.; Hu, X.; Jiang, G. Strength Training Characteristics of Different Loads Based on Acceleration Sensor and Finite Element Simulation. Sensors 2021, 21, 647. https://doi.org/10.3390/s21020647
Pang B, Ji Z, Zhang Z, Sun Y, Ma C, He Z, Hu X, Jiang G. Strength Training Characteristics of Different Loads Based on Acceleration Sensor and Finite Element Simulation. Sensors. 2021; 21(2):647. https://doi.org/10.3390/s21020647
Chicago/Turabian StylePang, Bo, Zhongqiu Ji, Zihua Zhang, Yunchuan Sun, Chunmin Ma, Zirong He, Xin Hu, and Guiping Jiang. 2021. "Strength Training Characteristics of Different Loads Based on Acceleration Sensor and Finite Element Simulation" Sensors 21, no. 2: 647. https://doi.org/10.3390/s21020647
APA StylePang, B., Ji, Z., Zhang, Z., Sun, Y., Ma, C., He, Z., Hu, X., & Jiang, G. (2021). Strength Training Characteristics of Different Loads Based on Acceleration Sensor and Finite Element Simulation. Sensors, 21(2), 647. https://doi.org/10.3390/s21020647