Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data
<p>Schematic diagram of the Phobos imaging model. The <span class="html-italic">S-xyz</span> is the image space coordinate system that uses the projective center (<span class="html-italic">S</span>) as its origin. The <span class="html-italic">O-uv</span> is the photo coordinate system and the origin of it is the principal point (<span class="html-italic">O</span>) of the image. The <span class="html-italic">C-XsYsZs</span> is the Phobos-fixed coordinate system defined by IAU. The f is the focal length of the camera. The gray plane is the image plane. The blue ellipsoid is the shape model of Phobos.</p> "> Figure 2
<p>Schematic diagram of surface feature point interpolation. The <b>S</b> is the projective center. The <b>m</b> is an image feature point in the image. The <b>A</b> is a surface feature point corresponding to image feature point <b>m</b>. The <b>L</b> is a line connecting an image feature point <b>m</b> and the corresponding surface feature point <b>A</b>. The <b>a1</b> is the intersection of the line <b>L</b> and the mean elevation surface (shown in blue). The <b>a2</b> is the intersection of the line <b>L</b> and a new elevation surface (shown in green). The h1 is the elevation of point <b>a1</b>. The wiggly black line is a real elevation surface.</p> "> Figure 3
<p>The orbital difference between initial spacecraft states computed with Doppler data and a “true” initial spacecraft state. “R”, “T”, and “N” denote radial, tangential, and normal directions, respectively. (Left: position difference, Right: velocity difference).</p> "> Figure 4
<p>The orbital difference between initial spacecraft states computed with combined data (Doppler and image data) and a “true” initial spacecraft state. “R”, “T”, and “N” denote radial, tangential, and normal directions, respectively. (Left: position difference, Right: velocity difference).</p> "> Figure 5
<p>The correlation coefficient of the initial spacecraft states computed with different data (Left: Doppler data, Right: Doppler and image data). “R”, “T”, and “N” denote radial, tangential, and normal directions, respectively. (P: position, V: velocity).</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Basic Data for Simulation
2.1.1. Phobos Shape Model
2.1.2. MEX Flyby Orbits
2.1.3. Geometric Properties of the SRC Camera
2.2. Image Feature Point Simulation
2.3. Simulation of the Surface Feature Point
2.3.1. Unify Coordinate System
2.3.2. Surface Feature Point Interpolation
2.4. Image Observation Model
2.5. Partial Derivatives of the Image Observation Model
2.6. Simulation of Doppler Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duxbury, T.C.; Zakharov, A.V.; Hoffmann, H.; Guinness, E.A. Spacecraft exploration of Phobos and Deimos. Planet. Space Sci. 2014, 102, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Duxbury, T.C. The figure of Phobos. Icarus 1989, 78, 169–180. [Google Scholar] [CrossRef]
- Sagdeev, R.Z.; Zakharov, A.V. A brief history of expedition to Phobos. Sov. Astron. Lett. 1990, 16, 125–128. [Google Scholar]
- Bills, B.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res. Planets 2005, 110, E07004. [Google Scholar] [CrossRef]
- Witasse, O.; Duxbury, T.; Chicarro, A.; Altobelli, A.; Andert, T.; Aronica, A.; Barabash, S.; Bertaux, J.-L.; Bibring, J.-P.; Cardesin-Moinelo, A.; et al. Mars express investigations of Phobos and Deimos. Planet. Space Sci. 2014, 102, 18–34. [Google Scholar] [CrossRef]
- Willner, K.; Oberst, J.; Hussmann, H.; Giese, B.; Hoffmann, H.; Matz, K.; Roastsch, T.; Duxbury, T. Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett. 2010, 294, 541–546. [Google Scholar] [CrossRef]
- Thomas, N.; Stelter, R.; Ivanov, A.; Bridges, N.T.; Herkenhoff, K.E.; McEwen, A.S. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planet. Space Sci. 2011, 59, 1281–1292. [Google Scholar] [CrossRef]
- Thomas, N.; Britt, D.T.; Herkenhoff, K.E.; Murchie, S.L.; Semenov, B.; Keller, H.U.; Smith, P.H. Observations of Phobos, Deimos, and bright stars with the Imager for Mars Pathfinder. J. Geophys. Res. Planets 1999, 104, 9055–9068. [Google Scholar] [CrossRef] [Green Version]
- Koji, M.; Nirotomo, N.; Yoshiaki, I.; Hiroki, S.; Keiko, Y.; Naru, H.; Naoyuki, H.; Noriyuki, N.; Toshimichi, O.; Arika, H.; et al. Improving Hayabusa2 trajectory by combing LIDAR data and a shape model. Icarus 2020, 338, 113574. [Google Scholar]
- Konopliv, A.S.; Asmar, S.W.; Bills, B.G.; Mastrodemos, N.; Park, R.S.; Raymond, C.A.; Smith, D.E.; Zuber, M.T. The Dawn gravity investigation at Vesta and Ceres. Space Sci. Rev. 2011, 163, 461–486. [Google Scholar] [CrossRef] [Green Version]
- Konopliv, A.S.; Asmar, S.W.; Park, R.S.; Bills, B.G.; Centinello, F.; Chamberlin, A.B.; Ermakov, A.; Gaskell, R.W.; Rambaux, N.; Raymond, C.A.; et al. The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the dawn tracking and optical data. Icarus 2014, 240, 103–117. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Miller, J.K.; Owen, W.M.; Yeomans, D.K.; Giorgini, J.D. A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus 2002, 160, 289–299. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Park, R.S.; Vaughan, A.T.; Bills, B.G.; Asmar, S.W.; Ermakov, A.I.; Rambaux, N.; Raymond, C.A.; Castillo-Rogez, J.C.; Russell, C.T.; et al. The Ceres gravity filed, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus 2018, 299, 411–429. [Google Scholar] [CrossRef]
- Farnocchia, D.; Takahashi, Y.; Chesley, S.R.; Park, R.S.; Mastrodemos, N.; Kennedy, B.M.; Rush, B.P. Asteroid 101955 Bennu Ephemeris Delivery, JPL Solution 103; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018.
- Farnocchia, D.; Takahashi, Y.; Davis, A.B.; Chesley, S.R.; Park, R.S.; Rush, B.P.; Mastrodemos, N.; Kennedy, B.M.; Bellerose, J.; Luby, D.P.; et al. Asteroid 101955 Bennu Ephemeris Delivery, JPL Solution 108; Jet Propulsion Laboratory: Pasadena, CA, USA, 2019.
- Yamamoto, K.; Otsubo, T.; Matsumoto, K.; Noda, H.; Namiki, N.; Takeuchi, H.; Ikeda, H.; Yoshikawa, M.; Yamamoto, Y.; Senshu, H.; et al. Dynamic precise orbit determination of Hayabusa2 using laser altimeter (LIDAR) and image tracking data sets. Earth Planets Space 2020, 72, 85. [Google Scholar] [CrossRef]
- Lauer, M.; Herfort, U.; Hocken, D.; Kiebassa, S. Optical measurements for the flyby navigation of Rosetta at asteroid Steins. In Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 September–2 October 2009. [Google Scholar]
- Santayana, R.P.D.; Lauer, M. Optical measurements for Rosetta navigation near the comet. In Proceedings of the 25th International Symposium on Space Flight Dynamics, Munich, Germany, 19–23 October 2015. [Google Scholar]
- Centinello III, F.J.; Zuber, M.T.; Smith, D.E. Orbit determination of the Dawn spacecraft with radiometric and image Data. J. Spacecr. Rocket. 2015, 52, 1331–1337. [Google Scholar] [CrossRef]
- Willner, K.; Shi, X.; Oberst, J. Phobos’ shape and topography models. Planet Space Sci. 2014, 102, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Konopliv, A.S.; Park, R.S.; Folkner, W.M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 2016, 274, 253–260. [Google Scholar] [CrossRef]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H. The planetary and lunar ephemeris DE421. JPL Memorandum IOM 343R-08-003 2008. [Google Scholar]
- Moyer, T.D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 3. [Google Scholar]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.-P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. Satellite Orbits: Models, Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Oberst, J.; Schwarz, G.; Behnke, T.; Homann, H.; Matz, K.-D.; Flohrer, J.; Hirsch, H.; Roatsch, T.; Scholten, F.; Hauber, E.; et al. The imaging performance of the SRC on Mars Express. Planet Space Sci. 2008, 56, 473–491. [Google Scholar] [CrossRef]
- Archinal, B.A.; Acton, C.H.; A’Hearn, M.F.; Conrad, A.; Consolmagno, G.J.; Duxbury, T.; Hestroffer, D.; Hilton, J.L.; Kirk, R.L.; Klioner, S.A.; et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celest. Mech. Dyn. Astr. 2018, 130, 22. [Google Scholar] [CrossRef]
- Linder, W. Digital Photogrammetry: A Practical Course, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2016; p. 39. [Google Scholar]
- Mathews, P.M.; Dehant, V.; Gipson, J.M. Tidal station displacements, J. Geophys. Res. 1997, 102, 20469–20477. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111, B02406. [Google Scholar] [CrossRef]
- Yan, J.G.; Yang, X.; Ye, M.; Li, F.; Jin, W.T.; Barriot, J.-P. Independent Mars spacecraft precise orbit determination software development and its application. Astrophys. Space Sci. 2017, 362, 123. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.G.; Andert, T.; Ye, M.; Patzold, M.; Jin, W.T.; Li, F.; Barriot, J.-P. The second degree gravity coefficients of Phobos from two Mars Express flybys. Mon. Not. R. Astron. Soc. 2019, 490, 2007–2012. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Desai, S.D.; Dumont, P.J.; Kennedy, B.M.; Null, G.W.; Owen, W.M., Jr.; Riedel, J.E.; Synnott, S.P.; Werner, R.A. Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System. In Proceedings of the Spaceflight Mechanics Meeting, Monterey, CA, USA, 9–11 February 1998. [Google Scholar]
Configuration | Description |
---|---|
The initial MEX state (MARS J2000) | Epoch (UTC): 2013-12-29 03:40:00; X(m): 2067685.5850630, Y(m): −6081856.4673221, Z (m):10990534.6587460 Vx(m/s): −1085.32769224, Vy(m/s): −673.97767323, Vz(m/s): 490.54349005 |
Force model | MRO120D (truncated to 95 degrees and order); N-body perturbation (DE421, Phobos ephemeris: NOE-4-2015-b.bsp); Solar radiation (Simple model); Martian Albedo and IR; Post-Newtonian effect (Sun and Planets); Mars solid tidal perturbation (Love number K2 = 0.169); Mars atmospheric drag (atmospheric pressure and density from Mars Climate Data base v5.3) |
Arc | The Flyby in 2013 |
---|---|
Time span | 2013-12-29-07:07:35-07:10:25 |
Sample interval | 5 s |
Number of orbit point | 35 |
Spacecraft altitude | 59–264 km |
Property | Value |
---|---|
Focal length f | 988.5 mm |
(in-flight calibration) | |
Number of pixels | 1024 × 1024 pixels |
Number of active pixels | 1008 × 1018 pixels |
(lines × samples) | |
Pixel size | 9 × 9 µm |
FOV per pixel | 9 µrad |
FOV total | 9 mrad |
Item | Values |
---|---|
Image noise | 0.5 pixel |
Phobos shape error | 1.0 m |
Camera attitude errors | boresight: 1 pixel; twist angle: 1.0 mrad |
Data Type | Data Amount | Position (m) | Velocity (mm/s) | ||||
---|---|---|---|---|---|---|---|
R | T | N | R | T | N | ||
Doppler | 5250 | 0.4715 | 33.5680 | 294.4105 | 3.3327 | 1.4512 | 16.2230 |
Doppler + Image | 10,535 | 0.2497 | 0.6971 | 5.1336 | 0.0869 | 0.0135 | 0.0874 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Liu, L.; Liu, S.; Xie, P.; Gao, W.; Yan, J. Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data. Sensors 2021, 21, 385. https://doi.org/10.3390/s21020385
Zhu X, Liu L, Liu S, Xie P, Gao W, Yan J. Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data. Sensors. 2021; 21(2):385. https://doi.org/10.3390/s21020385
Chicago/Turabian StyleZhu, Xinbo, Lu Liu, Suyan Liu, Pan Xie, Wutong Gao, and Jianguo Yan. 2021. "Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data" Sensors 21, no. 2: 385. https://doi.org/10.3390/s21020385
APA StyleZhu, X., Liu, L., Liu, S., Xie, P., Gao, W., & Yan, J. (2021). Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data. Sensors, 21(2), 385. https://doi.org/10.3390/s21020385