Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring
<p>Overview of a soft wearable bioelectronic system for recording of electrodermal activity and home sleep monitoring. (<b>A</b>) Schematic illustration of a wearable patch on the wrist to assess sleep quality at home. (<b>B</b>) Photos showing a soft electronic system enclosed with an elastomer (left) and a pair of graphene electrodes on a silicone tape (right). (<b>C</b>) Illustration of the integrated bioelectronics, including a pair of electrodes, circuit, battery, and connector on a reusable silicone tape. (<b>D</b>) Flow chart that captures data recording and processing to quantify sleep stages at home.</p> "> Figure 2
<p>Characterization of mechanical and electrical properties of printed graphene electrodes. (<b>A</b>) Photos of a graphene electrode under cyclic bending. (<b>B</b>) Result of measured resistant change of the electrode in (<b>A</b>) with ten repetitive bending cycles up to 180 degrees. (<b>C</b>) Skin-electrode contact impedance on the wrist with different sizes of graphene electrodes and the comparison with a commercial gel electrode. Error bars indicate standard deviation from five trials (n = 5). (<b>D</b>) Measured GSR data from the wrist using the biggest graphene electrode (area = 4 cm<sup>2</sup>) in (<b>C</b>).</p> "> Figure 3
<p>Determination of the wake-sleep transition based on GSR signals and validation with EEG signals. (<b>A</b>) EEG spectrogram measured on the forehead that differentiates the transition between awake and sleep (top), band-pass filtered GSR data measured on the wrist (middle), and RMS data from the filtered GSR for determination of sleeping (bottom). (<b>B</b>) Signal processing method of GSR data and sleep estimation process based on the RMS threshold. (<b>C</b>) Optimization of the threshold values to determine the sleeping transition in comparison with the EEG data.</p> "> Figure 4
<p>Determination of four sleep stages based on GSR data. (<b>A</b>) Raw EEG spectrogram measured during sleep (top), hypnogram derived from the EEG data showing four sleep stages, including REM, N1, N2, and N3 (middle), and measured GSR data during sleep (bottom). The RMS values from GSR data show a continuous low tendency below the fixed threshold, verifying the entire epochs are in sleep status. (<b>B</b>) Comparison of classified sleep stages from EEG data with GSR data in three epochs. (<b>C</b>) Summarized correlation between sleep stages and GSR counts from three epochs in (<b>B</b>). Error bars: standard deviation from three trials. (<b>D</b>) Summary of statistical analysis using ANOVA, showing the data significance in (<b>C</b>). High significance is identified in epoch 2 (<span class="html-italic">F</span> = 6.878, <span class="html-italic">p</span> = 0.0003, <span class="html-italic">η</span><sup>2</sup> = 0.16).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of a Soft Wearable Bioelectronic System
2.2. Validation of Sleep Data with an EEG System
2.3. GSR Data Acquisition
2.4. Quantification of Physiological Data
3. Results and Discussion
3.1. Overview of a Soft Wearable Bioelectronic System for Home Sleep Monitoring
3.2. Characterization of Mechanical and Electrical Properties of Printed Graphene Electrodes
3.3. Detection of Wake-Sleep Transition Based on GSR Signals and Validation with EEG Signals
3.4. Determination of Four Sleep Stages Based on GSR Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, J.M. Clues to the functions of mammalian sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef]
- Grandner, M.A. Sleep, health, and society. Sleep Med. Clin. 2017, 12, 1–22. [Google Scholar] [CrossRef]
- Daniela, T.; Alessandro, C.; Giuseppe, C.; Fabio, M.; Cristina, M.; Luigi, D.G.; Michele, F. Lack of sleep affects the evaluation of emotional stimuli. Brain Res. Bull. 2010, 82, 104–108. [Google Scholar] [CrossRef]
- Wallace, D.D.; Boynton, M.H.; Lytle, L.A. Multilevel analysis exploring the links between stress, depression, and sleep problems among two-year college students. J. Am. Coll. Health 2017, 65, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Stickgold, R. Sleep-dependent memory consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef]
- Brown, M.W.; Aggleton, J.P. Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2001, 2, 51–61. [Google Scholar]
- Irwin, M.R. Why sleep is important for health: A psychoneuroimmunology perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.R.; Opp, M.R. Sleep health: Reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 2017, 42, 129–155. [Google Scholar]
- Nabavi, S.; Debbarma, S.; Bhadra, S. A smart mandibular advancement device for intraoral cardiorespiratory monitoring. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4079–4084. [Google Scholar]
- Hamida, S.T.-B.; Hamida, E.B.; Ahmed, B.; Abu-Dayya, A. Towards efficient and secure in-home wearable insomnia monitoring and diagnosis system. In Proceedings of the 13th IEEE International Conference on BioInformatics and BioEngineering, Chania, Greece, 10–13 November 2013; pp. 1–6. [Google Scholar]
- Milici, S.; Lázaro, A.; Villarino, R.; Girbau, D.; Magnarosa, M. Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sens. J. 2018, 18, 2145–2152. [Google Scholar] [CrossRef]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alessi, C.A.; Bailey, D.; Coleman, J., Jr.; Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice parameters for the indications for polysomnography and related procedures: An update for 2005. Sleep 2005, 28, 499–523. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events; American Academy of Sleep Medicine: Darien, IL, USA, 2012; Volume 176. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Miglis, M. Sleep and the autonomic nervous system. In Sleep and Neurologic Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 227–244. [Google Scholar]
- Sano, A.; Picard, R.W.; Stickgold, R. Quantitative analysis of wrist electrodermal activity during sleep. Int. J. Psychophysiol. 2014, 94, 382–389. [Google Scholar] [CrossRef]
- Lester, B.; Burch, N.; Dossett, R. Nocturnal EEG-GSR profiles: The influence of presleep states. Psychophysiology 1967, 3, 238–248. [Google Scholar] [CrossRef]
- Koumans, A.J.; Tursky, B.; Solomon, P. Electrodermal levels and fluctuations during normal sleep. Psychophysiology 1968, 5, 300–306. [Google Scholar] [CrossRef]
- Liguori, R.; Donadio, V.; Foschini, E.; Di Stasi, V.; Plazzi, G.; Lugaresi, E.; Montagna, P. Sleep stage-related changes in sympathetic sudomotor and vasomotor skin responses in man. Clin. Neurophysiol. 2000, 111, 434–439. [Google Scholar] [CrossRef]
- Kobayashi, R.; Koike, Y.; Hirayama, M.; Ito, H.; Sobue, G. Skin sympathetic nerve function during sleep-a study with effector responses. Auton. Neurosci. 2003, 103, 121–126. [Google Scholar] [CrossRef]
- Hwang, S.H.; Seo, S.; Yoon, H.N.; Jung, D.W.; Baek, H.J.; Cho, J.; Choi, J.W.; Lee, Y.J.; Jeong, D.-U.; Park, K.S. Sleep period time estimation based on electrodermal activity. IEEE J. Biomed. Health Inform. 2015, 21, 115–122. [Google Scholar] [CrossRef]
- Herlan, A.; Ottenbacher, J.; Schneider, J.; Riemann, D.; Feige, B. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification. J. Sleep Res. 2019, 28, e12694. [Google Scholar] [CrossRef]
- Fowles, D.C.; Christie, M.J.; Edelberg, R.; Grings, W.W.; Lykken, D.T.; Venables, P.H. Publication recommendations for electrodermal measurements. Psychophysiology 1981, 18, 232–239. [Google Scholar] [CrossRef]
- Lam, L.K.; Szypula, A.J. Wearable emotion sensor on flexible substrate for mobile health applications. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3-A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 39–42. [Google Scholar]
- Lim, H.R.; Kim, H.S.; Qazi, R.; Kwon, Y.T.; Jeong, J.W.; Yeo, W.H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924. [Google Scholar] [CrossRef]
- Herbert, R.; Kim, J.-H.; Kim, Y.S.; Lee, H.M.; Yeo, W.-H. Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 2018, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Kwon, Y.-T.; Kim, Y.-S.; Lim, H.-R.; Mahmood, M.; Yeo, W.-H. Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes. Biosens. Bioelectron. 2020, 151, 111981. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.S.; Mahmood, M.; Kwon, S.; Zavanelli, N.; Kim, H.S.; Rim, Y.S.; Epps, F.; Yeo, W.H. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv. Sci. 2020, 7, 2000810. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.-S.; Mahmood, M.; Kwon, S.; Epps, F.; Rim, Y.S.; Yeo, W.-H. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens. Bioelectron. 2020, 173, 112764. [Google Scholar] [CrossRef]
- Kwon, Y.-T.; Kim, Y.-S.; Kwon, S.; Mahmood, M.; Lim, H.-R.; Park, S.-W.; Kang, S.-O.; Choi, J.J.; Herbert, R.; Jang, Y.C.; et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Mishra, S.; Kim, Y.-S.; Intarasirisawat, J.; Kwon, Y.-T.; Lee, Y.; Mahmood, M.; Lim, H.-R.; Herbert, R.; Yu, K.J.; Ang, C.S.; et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 2020, 6, eaay1729. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, M.; Mzurikwao, D.; Kim, Y.-S.; Lee, Y.; Mishra, S.; Herbert, R.; Duarte, A.; Ang, C.S.; Yeo, W.-H. Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 2019, 1, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4); American Academy of Sleep Medicine: Darien, IL, USA, 2017. [Google Scholar]
- Prerau, M.J.; Brown, R.E.; Bianchi, M.T.; Ellenbogen, J.M.; Purdon, P.L. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology 2017, 32, 60–92. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Lu, C.; Yang, S.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050. [Google Scholar] [CrossRef]
- Chung, H.U.; Kim, B.H.; Lee, J.Y.; Lee, J.; Xie, Z.; Ibler, E.M.; Lee, K.H.; Banks, A.; Jeong, J.Y.; Kim, J.; et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Romine, W.; Banerjee, T.; Goodman, G. Toward sensor-based sleep monitoring with electrodermal activity measures. Sensors 2019, 19, 1417. [Google Scholar] [CrossRef] [Green Version]
- Onton, J.A.; Kang, D.Y.; Coleman, T.P. Visualization of whole-night sleep EEG from 2-channel mobile recording device reveals distinct deep sleep stages with differential electrodermal activity. Front. Hum. Neurosci. 2016, 10, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. | Device Form Factor | Electrode Type | Data Recording | Device Location | Application | Recording Place | ANOVA |
---|---|---|---|---|---|---|---|
This work | Soft, thin, integrated | Dry (graphene) | Wireless | Wrist | Classification of sleep stages and Detection of sleep/wake states | Home | F = 6.9 p = 0.0003 |
[39] | Rigid and bulky | Dry (Ag) | Wireless | Wrist | GSR measurement during sleep | Home | - |
[25] | Rigid and bulky | Gel (Ag/AgCl) | Wireless | Finger | GSR measurement during sleep | Lab | - |
[23] | Rigid and bulky | Gel (Ag/AgCl) | Wired | Palm | Detection of sleep/wake states | Lab | - |
[40] | Rigid and bulky | Dry (Ag) | Wireless | Wrist | Classification of sleep stages | Home | F = 55.8 p < 0.0001 |
[22] | Rigid and bulky | Gel (Ag/AgCl) | Wired | Finger | Estimation of sleep time | Lab | - |
[17] | Rigid and bulky | Dry (Ag/AgCl) | Wireless | Wrist Palm | Classification of sleep stages | Home/Lab | F = 12.7 p < 0.00001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kwon, S.; Kwon, Y.-T.; Yeo, W.-H. Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. Sensors 2021, 21, 354. https://doi.org/10.3390/s21020354
Kim H, Kwon S, Kwon Y-T, Yeo W-H. Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. Sensors. 2021; 21(2):354. https://doi.org/10.3390/s21020354
Chicago/Turabian StyleKim, Hojoong, Shinjae Kwon, Young-Tae Kwon, and Woon-Hong Yeo. 2021. "Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring" Sensors 21, no. 2: 354. https://doi.org/10.3390/s21020354
APA StyleKim, H., Kwon, S., Kwon, Y.-T., & Yeo, W.-H. (2021). Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. Sensors, 21(2), 354. https://doi.org/10.3390/s21020354