Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence
<p>Generic diagram of a measurement feedback system.</p> "> Figure 2
<p>Scheme for carrying out tests and building the database.</p> "> Figure 3
<p>Feedback measurement system for indirect flow measurement.</p> "> Figure 4
<p>Fuzzy Pressure Control System.</p> "> Figure 5
<p>Membership function of the error and error variation input variables.</p> "> Figure 6
<p>Output variable membership function.</p> "> Figure 7
<p>Diagram of Multi-layer Feedforward Backpropagation ANN without feedback, with two input vectors and an output.</p> "> Figure 8
<p>Diagram of ANN-NARX with feedback.</p> "> Figure 9
<p>Data collection workflow for training.</p> "> Figure 10
<p>Experimental setup for data acquisition.</p> "> Figure 11
<p>Scheme for carrying out tests and building the database.</p> "> Figure 12
<p>Measurement and estimation of flow during ANN testing using Multi-layer Feedforward Backpropagation.</p> "> Figure 13
<p>Flow measurement and estimation during ANN testing using NARX.</p> "> Figure 14
<p>Control of the secondary quantity (Pressure) in the test phase for different set-point values: 8, 12, 16, 20, and 24 mH2O.</p> "> Figure 15
<p>Flow measurement (sensor) and indirect flow estimation during the ANN-NARX test step.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
Indirect Measurements
3. Proposed Methodology
3.1. Pressure Measurement
3.2. Fuzzy Controller
3.3. ANN-Based Reconstruction
4. Experimental Results
4.1. Evaluation of the Fuzzy Controller
4.2. Evaluation of the Block at the ANN Training Stage
4.3. Evaluation of the Block at the ANN Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quevedo, J.; Chen, H.; Cugueró, M.À.; Tino, P.; Puig, V.; Garciá, D.; Yao, X. Combining learning in model space fault diagnosis with data validation/reconstruction: Application to the Barcelona water network. Eng. Appl. Artif. Intell. 2014, 30, 18–29. [Google Scholar] [CrossRef]
- Cabral, M.; Loureiro, D.; Almeida, M.D.C.; Covas, D. Estimation of costs for monitoring urban water and wastewater networks. J. Water Supply Res. Technol. Aqua 2019, 68, 87–97. [Google Scholar] [CrossRef]
- Gwozdziej-Mazur, J.; Świętochowski, K. Analysis of the water meter management of the urban-rural water supply system. E3S Web Conf. 2018, 44, 51. [Google Scholar] [CrossRef]
- Wang, G.; Kiamehr, K.; Song, L. TDevelopment of a virtual pump water flow meter with a flow rate function of motor power and pump head. Energy Build. 2016, 117, 63–70. [Google Scholar] [CrossRef]
- Vladimir, Ć.; Heiliö, M.; Krejić, N.; Nedeljkov, M. Mathematical model for efficient water flow management. Nonlinear Analysis: Real World Applications. J. Abbr. 2008, 10, 142–149. [Google Scholar] [CrossRef]
- Ruhm, K.H. Measurement plus observation—A new structure in metrology. Measurement 2018, 126, 421–432. [Google Scholar] [CrossRef]
- Gwaivangmin, B.I.; Jiya, J.D. Water demand prediction using artificial neural network for supervisory control. Niger. J. Technol. 2017, 36, 148–154. [Google Scholar]
- Farah, E.; Abdallah, A.; Shahrour, I. Prediction of water consumption using Artificial Neural Networks modelling (ANN). MATEC Web Conf. 2019, 295, 01004. [Google Scholar] [CrossRef]
- Cordoba, G.C.; Tuhovčák, L.; Tauš, M. Using artificial neural network models to assess water quality in water distribution networks. Procedia Eng. 2014, 70, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Valentin, N.; Denœux, T. A neural network-based software sensor for coagulation control in a water treatment plant. Intell. Data Anal. 2001, 5, 23–39. [Google Scholar] [CrossRef]
- Andrianov, N. A machine learning approach for virtual flow metering and forecasting. IFAC-PapersOnLine 2018, 51, 191–196. [Google Scholar] [CrossRef]
- Majumder, B.D.; Roy, J.K.; Padhee, S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: A review. IEEE Sens. J. 2018, 19, 1204–1214. [Google Scholar] [CrossRef]
- Eichstädt, S.; Ruhm, K.H.; Shestakov, A.L. Dynamic measurement and its relation to metrology, mathematical theory and signal processing: A review. J. Phys. Conf. Ser. 2018, 1065, 212018. [Google Scholar] [CrossRef]
- Morawski, R.Z. Unified approach to measurand reconstruction. IEEE Trans. Instrum. Meas. 1994, 43, 226–231. [Google Scholar] [CrossRef]
- Babunski, D.; Zaev, E.; Tuneski, A.; Bozovic, D. Optimization methods for water supply SCADA system. Mediterr. Conf. Embed. Comput. 2018, 7, 1–4. [Google Scholar]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven Fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2020. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Chung, W.Y.; Lee, J. Artificial Intelligence-Based Optimal Grasping Control. Sensors 2020, 20, 6390. [Google Scholar] [CrossRef]
- González, B.; Jiménez, F.J.; De Frutos, J. A virtual instrument for road vehicle classification based on piezoelectric transducers. Sensors 2020, 20, 4597. [Google Scholar] [CrossRef]
- Catunda, S.Y.C.; Deep, G.S.; van Haandel, A.C.; Freire, R.C.S. Feedback control method for estimating the oxygen uptake rate in activated sludge systems. J. IEEE Trans. Instrum. Meas. 1999, 48, 864–869. [Google Scholar] [CrossRef]
- Rodriguez, H.; Puig, V.; Flores, J.J.; Lopez, R. Flow meter data validation and reconstruction using neural networks: Application to the Barcelona water network. Eur. Control Conf. (ECC) 2016, 1, 1746–1751. [Google Scholar]
- Loureiro, D.; Amado, C.; Martins, A.; Vitorino, D.; Mamade, A.; Coelho, S.T. Water distribution systems flow monitoring and anomalous event detection: A practical approach. Urban Water J. 2016, 13, 242–252. [Google Scholar] [CrossRef]
- Zhu, S.E.; Krishna Ghatkesar, M.; Zhang, C.; Janssen, G.C.A.M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 2013, 102, 161904. [Google Scholar] [CrossRef] [Green Version]
- Fecarotta, O.; Aricò, C.; Carravetta, A.; Martino, R.; Ramos, H.M. ydropower potential in water distribution networks: Pressure control by PATs. Water Resour. Manag. 2015, 29, 699–714. [Google Scholar] [CrossRef]
- Sabri, L.A.; Al-mshat, H.A. TImplementation of Fuzzy and PID controller to water level system using LabView. Int. J. Comput. Appl. 2015, 116, 142–149. [Google Scholar]
- Camboim, M.M.; Villanueva, J.M.M.; de Souza, C.P. Fuzzy Controller Applied to a Remote Energy Harvesting Emulation Platform. Sensors 2020, 20, 5874. [Google Scholar] [CrossRef]
- Ross, T.J. Fuzzy logic with engineering applications. In Fuzzy Logic with Engineering Applications; Wiley: New York, NY, USA, 2004; Volume 2, p. 148. [Google Scholar]
- Diniz, A.M.F.; de Oliveira Fontes, C.H.; Da Costa, C.A.; Costa, G.M.N. Dynamic modeling and simulation of a water supply system with applications for improving energy efficiency. Energy Effic. 2015, 8, 417–432. [Google Scholar] [CrossRef]
- Barker, G.B. The Engineer’s Guide to Plant Layout and Piping Design for the Oil and Gas Industries; Gulf Professional Publishing: Woburn, MA, USA, 2017; p. 422. [Google Scholar]
- Xu, Z.; Yang, J.; Cai, H.; Kong, Y.; He, B. Water distribution network modeling based on NARX. IFAC-PapersOnLine 2015, 48, 72–77. [Google Scholar]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Liu, H. On the Levenberg-Marquardt training method for feed-forward neural networks. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; pp. 456–460. [Google Scholar]
Variation of Error | ||||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | Z | PS | PM | PB | ||
Error | NB | DS | DS | DS | DM | DM | DB | DB |
NM | Z | DS | DM | DM | DM | DB | DB | |
NS | Z | Z | DS | DS | DS | DS | DM | |
Z | IS | Z | Z | Z | Z | Z | DS | |
PS | IS | IS | IS | Z | IS | Z | Z | |
PM | IB | IB | IM | IM | IM | IM | IS | |
PB | IS | IB | IB | IB | IM | IM | IM |
Feature | System Response |
---|---|
Rise time | 1.76 s |
Settling time | 4.35 s |
Overshoot | - |
Steady-state error | 0.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, T.K.S.; Villanueva, J.M.M.; Gomes, H.P.; Catunda, S.Y.C. Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence. Sensors 2021, 21, 75. https://doi.org/10.3390/s21010075
Flores TKS, Villanueva JMM, Gomes HP, Catunda SYC. Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence. Sensors. 2021; 21(1):75. https://doi.org/10.3390/s21010075
Chicago/Turabian StyleFlores, Thommas Kevin Sales, Juan Moises Mauricio Villanueva, Heber P. Gomes, and Sebastian Y. C. Catunda. 2021. "Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence" Sensors 21, no. 1: 75. https://doi.org/10.3390/s21010075
APA StyleFlores, T. K. S., Villanueva, J. M. M., Gomes, H. P., & Catunda, S. Y. C. (2021). Indirect Feedback Measurement of Flow in a Water Pumping Network Employing Artificial Intelligence. Sensors, 21(1), 75. https://doi.org/10.3390/s21010075