A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles
<p>The present work proposes an approach to estimate the 3D rotation between the IMU and vehicle coordinate systems (<math display="inline"><semantics> <msubsup> <mi>R</mi> <mrow> <mspace width="0.222222em"/> <mi>m</mi> </mrow> <mrow> <mspace width="0.222222em"/> <mi>v</mi> </mrow> </msubsup> </semantics></math>). Additionally, calibration procedures are described to determine the 3D rotation between a ground-truth measurement system and both the IMU and vehicle coordinate systems (<math display="inline"><semantics> <msubsup> <mi>R</mi> <mrow> <mspace width="0.222222em"/> <mi>g</mi> </mrow> <mrow> <mspace width="0.222222em"/> <mi>m</mi> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>R</mi> <mrow> <mspace width="0.222222em"/> <mi>g</mi> </mrow> <mrow> <mspace width="0.222222em"/> <mi>v</mi> </mrow> </msubsup> </semantics></math>, respectively). These represent a reference to directly assess the accuracy of the estimated IMU–vehicle 3D rotation.</p> "> Figure 2
<p>Representation of the inertial (<span class="html-italic">i</span>), ECEF (<span class="html-italic">e</span>), local navigation (<span class="html-italic">n</span>), vehicle (<span class="html-italic">v</span>) and road (<span class="html-italic">r</span>) coordinate systems. For a clear depiction, a world and vehicle perspectives are displayed, which corresponds with (<b>a</b>,<b>b</b>), respectively. The black and yellow planes respectively represent the road plane and the plane tangent to the Earth’s ellipsoid, which is considered to be normal to gravity. Please note that <span class="html-italic">n</span> and <span class="html-italic">v</span> share the same origin, and the origin of <span class="html-italic">r</span> lies on the road plane.</p> "> Figure 3
<p>Representation of the ground-truth (<span class="html-italic">g</span>), IMU (<span class="html-italic">m</span>), vehicle (<span class="html-italic">v</span>) and road (<span class="html-italic">r</span>) coordinate systems. Please note that the origin of the ground-truth and IMU coordinate systems is not necessarily coincident with that of the vehicle coordinate system. This representation has been chosen to highlight the misalignment between the different coordinate systems.</p> "> Figure 4
<p>Vehicle-to-road pose [<a href="#B3-sensors-21-00007" class="html-bibr">3</a>]. (<b>a</b>) shows the roll model, where <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>[</mo> <mi mathvariant="normal">F</mi> <mo>,</mo> <mi mathvariant="normal">R</mi> <mo>]</mo> </mrow> </semantics></math>; (<b>b</b>) depicts the pitch model where <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>[</mo> <mi mathvariant="normal">L</mi> <mo>,</mo> <mi mathvariant="normal">R</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Calibration procedure on non-horizontal road (roll angle perspective). (<b>a</b>) depicts the first standstill pose and (<b>b</b>) the second, which is equal to the first pose but facing the opposite direction. <span class="html-italic">g</span>, <span class="html-italic">v</span> and <span class="html-italic">r</span> denote the ground-truth, vehicle and road coordinate systems, respectively. (<b>a</b>,<b>b</b>) correspond with (10) and (11), respectively. The yellow line represents the horizontal plane. The circle on the upper left shows the direction of positive roll angles, and the arrows in it represent the <span class="html-italic">y</span>-axes of the corresponding coordinate systems. Note that, in the circles, the angle between the yellow line and the black arrow correspond with <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>n</mi> <mi>r</mi> </mrow> </msub> </semantics></math>. It can then be seen that <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mrow> <mi>n</mi> <mi>r</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>ϕ</mi> <mrow> <mi>n</mi> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>. The corresponding pitch angle perspective would be equivalent. It is omitted for the sake of conciseness.</p> "> Figure 6
<p>Velocities of a vehicle while driving straight ahead with constant speed over a well-paved horizontal road.</p> "> Figure 7
<p>Yaw calibration procedure on a non-horizontal road. The dashed and continuous lines respectively represent the visual division between lanes and the road limit. The vehicle drives on the same lane twice but in opposite directions. The upper left and right circles show the direction of positive yaw angles for the corresponding driving directions. The red, green and blue arrows in the circle depict the directions of the velocity vector, the <span class="html-italic">x</span>-axis of the vehicle CS and the <span class="html-italic">x</span>-axis of the ground-truth CS, respectively. <math display="inline"><semantics> <msub> <mi>β</mi> <mi>bank</mi> </msub> </semantics></math> is the side-slip angle stemming from the road bank and <math display="inline"><semantics> <msub> <mi>β</mi> <mi>g</mi> </msub> </semantics></math> the direction in which the ground-truth perceives the velocity vector.</p> "> Figure 8
<p>Calibration procedure for the estimation of the misalignment between the ground-truth and IMU coordinate systems.</p> "> Figure 9
<p>Measurements during a figure eight manoeuvre. The ground-truth angular rates (<math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>x</mi> <mi>g</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>y</mi> <mi>g</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>z</mi> <mi>g</mi> </msubsup> </semantics></math>) and specific forces (<math display="inline"><semantics> <msubsup> <mi>f</mi> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>x</mi> </mrow> <mi>g</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>f</mi> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>y</mi> </mrow> <mi>g</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>f</mi> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>z</mi> </mrow> <mi>g</mi> </msubsup> </semantics></math>) obtained from the high-performance INS/GNSS system and transformed to the mounting position of the automotive-grade IMU, and the bias-corrected angular rates (<math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>x</mi> <mi>m</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>y</mi> <mi>m</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>z</mi> <mi>m</mi> </msubsup> </semantics></math>) and bias-corrupted specific forces (<math display="inline"><semantics> <msubsup> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>x</mi> </mrow> <mi>m</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>y</mi> </mrow> <mi>m</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>m</mi> <mo>,</mo> <mi>z</mi> </mrow> <mi>m</mi> </msubsup> </semantics></math>) supplied by the automotive-grade IMU.</p> "> Figure 10
<p>Estimation results for the figure eight manoeuvre of <a href="#sensors-21-00007-f009" class="html-fig">Figure 9</a>. <math display="inline"><semantics> <msub> <mover accent="true"> <mi>ϕ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>1</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>1</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>ψ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>1</mn> </mrow> </msub> </semantics></math> are the parameter estimates obtained based on the original data. <math display="inline"><semantics> <msub> <mover accent="true"> <mi>ϕ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>ψ</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>g</mi> <mn>2</mn> </mrow> </msub> </semantics></math> are the parameter estimates obtained based on the data corrupted by the artificial misalignment error <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>1.2</mn> <mo>)</mo> <mspace width="3.33333pt"/> <mi>deg</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>m</mi> <mi>g</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>θ</mi> <mrow> <mi>m</mi> <mi>g</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ψ</mi> <mrow> <mi>m</mi> <mi>g</mi> </mrow> </msub> </semantics></math>, respectively. Finally, the determinant of the excitation matrix <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <mspace width="0.222222em"/> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> </semantics></math> is depicted in the last sub-plot.</p> "> Figure 11
<p>Estimation robustness against noise. One hundred different sequences of additive Gaussian white noises with standard deviations <math display="inline"><semantics> <mrow> <mn>0.001</mn> <mspace width="3.33333pt"/> <mi>rad</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.05</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>/</mo> <msup> <mi mathvariant="normal">s</mi> <mn>2</mn> </msup> </mrow> </semantics></math> have been added to the original IMU angular rate and specific force data, respectively. The estimator has been run for each sequence. The last estimated values of each run have been collected in these histograms. The red curves represent the corresponding best Gaussian distribution fits. The corresponding mean <math display="inline"><semantics> <mi>μ</mi> </semantics></math> and standard deviation <math display="inline"><semantics> <mi>σ</mi> </semantics></math> are added on top of each plot.</p> "> Figure 12
<p>Estimation approach for the IMU–vehicle misalignment estimation. The proposed regularized adaptive Kalman filter relies on the specific forces (<math display="inline"><semantics> <msubsup> <mover accent="true"> <mi mathvariant="bold-italic">f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>m</mi> </mrow> <mi>m</mi> </msubsup> </semantics></math>) supplied by an automotive-grade 6D IMU, its bias-compensated angular rates (<math display="inline"><semantics> <msubsup> <mi mathvariant="bold-italic">ω</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> <mi>m</mi> </msubsup> </semantics></math>) as well as over-road longitudinal, lateral and vertical velocity information (<math display="inline"><semantics> <msubsup> <mi>v</mi> <mrow> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>x</mi> </mrow> <mi>r</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>v</mi> <mrow> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>y</mi> </mrow> <mi>r</mi> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>v</mi> <mrow> <mi>r</mi> <mi>v</mi> <mo>,</mo> <mi>z</mi> </mrow> <mi>r</mi> </msubsup> </semantics></math>) mainly provided by the odometry, single-track model and suspension, respectively. Furthermore, the vehicle-to-road orientation (<math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>r</mi> <mi>v</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>θ</mi> <mrow> <mi>r</mi> <mi>v</mi> </mrow> </msub> </semantics></math>), computed from the suspension signals, is used to relate the over-road velocities to the vehicle velocity (<math display="inline"><semantics> <msubsup> <mi mathvariant="bold-italic">v</mi> <mrow> <mi>e</mi> <mi>v</mi> </mrow> <mi>v</mi> </msubsup> </semantics></math>), see <a href="#sensors-21-00007-f004" class="html-fig">Figure 4</a>. Finally, constraints stemming from a standstill phase are used to enhance the performance of the estimator.</p> "> Figure 13
<p>Estimator inputs during a figure eight drive. The bias-free angular velocities (<math display="inline"><semantics> <msub> <mi>ω</mi> <mi>x</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>y</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>z</mi> </msub> </semantics></math>), the uncorrected specific forces (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>v</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>v</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> <mrow> <mi>i</mi> <mi>v</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </semantics></math>), the measurements (<math display="inline"><semantics> <msub> <mi>y</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>y</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>y</mi> <mn>3</mn> </msub> </semantics></math>).</p> "> Figure 14
<p>Estimation results during the figure eight manoeuvre of <a href="#sensors-21-00007-f013" class="html-fig">Figure 13</a> for both estimators (A) and (B). Additionally, in green, the parameter estimates obtained with estimator (A) based on the data corrupted by the artificial misalignment error <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>1.2</mn> <mo>)</mo> <mspace width="0.222222em"/> <mi>deg</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>m</mi> <mi>v</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>θ</mi> <mrow> <mi>m</mi> <mi>v</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ψ</mi> <mrow> <mi>m</mi> <mi>v</mi> </mrow> </msub> </semantics></math>, respectively, and the artificial bias errors <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mo>−</mo> <mn>0.2</mn> <mo>)</mo> </mrow> <mspace width="0.222222em"/> <mi mathvariant="normal">m</mi> <mo>/</mo> <msup> <mi mathvariant="normal">s</mi> <mn>2</mn> </msup> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>b</mi> <msub> <mi>f</mi> <mi>x</mi> </msub> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>b</mi> <msub> <mi>f</mi> <mi>y</mi> </msub> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>b</mi> <msub> <mi>f</mi> <mi>z</mi> </msub> </msub> </semantics></math>, respectively. Finally, the determinant of the excitation matrix <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>Ω</mo> <mrow> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mspace width="0.222222em"/> <msubsup> <mo>Σ</mo> <mi>k</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <mspace width="0.222222em"/> <msub> <mo>Ω</mo> <mi>k</mi> </msub> </mrow> </semantics></math> is depicted in the last sub-plot.</p> ">
Abstract
:1. Introduction
1.1. Brief Review of Previous Approaches
1.2. Current Approach and Main Contributions
- The proposed estimation scheme estimates all three misalignment angles while considering the IMU biases. This contrasts with most previously proposed approaches, in which the roll misalignment is neglected.
- A calibration manoeuvre is proposed for which a persistent excitation condition for the identification of the misalignment angles is experimentally validated. Furthermore, it is shown that the estimation results remain consistent despite moderate variations in the manoeuvre execution.
- The estimation scheme relies on cost-efficient automotive sensors, and it is not dependent on neither perception nor GNSS information. Experimental results show that, in spite of not using high-precision measurement systems, the approach supplies accurate and reliable misalignment estimates.
- Instead of relying on the non-holonomic constraint, information from the suspension system and a single-track model is used. Hence, the approach considers vertical movements caused by the suspension and side-slip angles in the rear axle, e.g., built during cornering or while driving on a road with significant bank angles.
- The pose of the vehicle with respect to the road plane is not seen as an IMU misalignment. Hence, readjustment of the misalignment estimates is not required due to, for instance, load redistribution or changes in the speed. This reduces the need for a continuous extrinsic calibration. A re-estimation of the misalignment angles would just be required after structural modifications in the platform, e.g., replacement of the IMU or alterations in the odometry.
- An approach to directly assess the validity of the misalignment estimates is proposed. This is based on the identification of the 3D rotation between a high-precision INS/GNSS, taken as ground-truth, and the IMU and vehicle coordinate systems.
2. Coordinate Systems and Preliminaries
2.1. Coordinate Systems
2.2. Notation
2.3. Inertial Measurement Unit: Preliminaries
3. Ground-Truth–Vehicle Misalignment Estimation
3.1. Roll and Pitch Misalignment
3.2. Yaw Misalignment
3.3. Results
4. Ground-Truth–IMU Misalignment Estimation
4.1. Method
4.1.1. Standstill Phase
4.1.2. Calibration Manoeuvre
Algorithm 1: Regularised recursive least squares [34]. |
|
4.2. Experimental Validation
- The algorithm ability to follow artificially introduced misalignment errors.
- The misalignment estimation robustness against noise.
- The consistency of the misalignment estimates obtained from a set of different measurements.
5. IMU–Vehicle Misalignment Estimation
5.1. Model
- Misalignment angles and IMU biases are small, which implies that second-order products involving these variables are negligible.
- Bearing in mind that the car angular motion remains small, particularly for pitch and roll movements, and may be neglected (where represents a small angle).
- The misalignment angles remain within the range of and, hence, the small-angle approximation holds (, ).
5.2. Estimator Design
5.2.1. Discrete-Time Implementation
5.2.2. Algorithm Description
Algorithm 2 Regularised Adaptive Kalman Filter (RAKF) | ||
INITIALIZATION | ||
1 | ; ; ; ; | |
RECURSION | ||
2 | ||
Prediction | ||
3 | %State prediction as in the KF | (a.1) |
4 | %Covariance prediction as in the KF | (a.2) |
Innovation | ||
5 | %Predicted measurement covariance as in the KF | (a.3) |
6 | %Kalman Gain as in the KF | (a.4) |
7 | %Covariance innovation as in KF | (a.5) |
8 | %Aux. var. (represents excitation for parameter estimation) | (a.6) |
9 | %Var. for simplification of (a.8) and (a.9) | (a.7) |
10 | %Parameter gain as in RLS | (a.8) |
11 | %Parameter covariance update as in the RLS | (a.9) |
12 | %Parameter covariance after forgetting | (a.10) |
13 | %Parameter covariance after regularization | (a.11) |
14 | %Aux. var. | (a.12) |
15 | %Measurement error (meas-pred) | (a.13) |
16 | %Parameter correction | (a.14) |
17 | %Parameter update | (a.15) |
18 | %State update | (a.16) |
, : A priori and a posteriori state estimates. | ||
, : A priori and a posteriori state error covariance matrices. |
5.2.3. Estimator with Constraints
5.3. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of (35)
References
- Farrell, J.A.; Roysdon, P.F. Advanced vehicle state estimation: A tutorial and comparative study. IFAC-Pap. OnLine 2017, 50, 15971–15976. [Google Scholar] [CrossRef]
- Singh, K.B.; Arat, M.A.; Taheri, S. Literature review and fundamental approaches for vehicle and tire state estimation. Veh. Syst. Dyn. 2018, 57, 1643–1665. [Google Scholar] [CrossRef]
- Marco, V.R.; Kalkkuhl, J.; Raisch, J.; Scholte, W.J.; Nijmeijer, H.; Seel, T. Multi-modal sensor fusion for highly accurate vehicle motion state estimation. Control Eng. Pract. 2020, 100, 104409. [Google Scholar] [CrossRef]
- Mirzaei, F.M.; Roumeliotis, S.I. A Kalman filter-based algorithm for IMU-camera calibration: Observability analysis and performance evaluation. IEEE Trans. Robot. 2008, 24, 1143–1156. [Google Scholar] [CrossRef]
- Brookshire, J.; Teller, S. Extrinsic calibration from per-sensor egomotion. Robot. Sci. Syst. VIII 2013, 5, 504–512. [Google Scholar]
- Heng, L.; Li, B.; Pollefeys, M. Camodocal: Automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1793–1800. [Google Scholar]
- Carrera, G.; Angeli, A.; Davison, A.J. SLAM-based automatic extrinsic calibration of a multi-camera rig. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2652–2659. [Google Scholar]
- Mirzaei, F.M.; Kottas, D.G.; Roumeliotis, S.I. 3-D lidar–camera intrinsic and extrinsic calibration: Identifiability and analytical least-squares-based initialization. Int. J. Robot. Res. 2012, 31, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Spletzer, J.R. On-line calibration of multiple lidars on a mobile vehicle platform. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 279–284. [Google Scholar]
- Le Gentil, C.; Vidal-Calleja, T.; Huang, S. 3-D lidar–IMU calibration based on upsampled preintegrated measurements for motion distortion correction. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2149–2155. [Google Scholar]
- Censi, A.; Franchi, A.; Marchionni, L.; Oriolo, G. Simultaneous calibration of odometry and sensor parameters for mobile robots. IEEE Trans. Robot. 2013, 29, 475–492. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.; Wang, M.; Liu, M. Hand-Eye Calibration: 4-D Procrustes Analysis Approach. IEEE Trans. Instrum. Meas. 2019, 69, 2966–2981. [Google Scholar] [CrossRef]
- Brunker, A.; Wohlgemuth, T.; Frey, M.; Gauterin, F. Odometry 2.0: A slip-adaptive EIF-based four-wheel- odometry model for parking. IEEE Trans. Intell. Veh. 2018, 4, 114–126. [Google Scholar] [CrossRef]
- Klier, W.; Reim, A.; Stapel, D. Robust Estimation of Vehicle Sideslip Angle—An Approach w/o Vehicle and Tire Models. In Proceedings of the SAE World Congress & Exhibition, Detroit, MI, USA, 14–17 April 2008. [Google Scholar]
- Selmanaj, D.; Corno, M.; Panzani, G.; Savaresi, S.M. Vehicle sideslip estimation: A kinematic based approach. Control Eng. Pract. 2017, 67, 1–12. [Google Scholar] [CrossRef]
- Grip, H.F.; Imsland, L.; Johansen, T.A.; Fossen, T.I.; Kalkkuhl, J.C.; Suissa, A. Nonlinear vehicle side-slip estimation with friction adaptation. Automatica 2008, 44, 611–622. [Google Scholar] [CrossRef]
- Katriniok, A.; Abel, D. Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability. IEEE Trans. Control Syst. Technol. 2016, 24, 1368–1381. [Google Scholar] [CrossRef]
- Grip, H.F.; Imsland, L.; Johansen, T.A.; Kalkkuhl, J.C.; Suissa, A. Vehicle sideslip estimation. IEEE Control Syst. Mag. 2009, 29, 36–52. [Google Scholar]
- Syed, Z.F.; Aggarwal, P.; Niu, X.; El-Sheimy, N. Civilian vehicle navigation: Required alignment of the inertial sensors for acceptable navigation accuracies. IEEE Trans. Veh. Technol. 2008, 57, 3402–3412. [Google Scholar] [CrossRef]
- Vinande, E.; Axelrad, P.; Akos, D. Mounting-angle estimation for personal navigation devices. IEEE Trans. Veh. Technol. 2009, 59, 1129–1138. [Google Scholar] [CrossRef]
- Wu, Y.; Goodall, C.; El-Sheimy, N. Self-calibration for IMU/odometer land navigation: Simulation and test results. In Proceedings of the ION International Technical Meeting, San Diego, CA, USA, 25–27 January 2010; Volume 2527. [Google Scholar]
- Chen, Q.; Zhang, Q.; Niu, X. Estimate the Pitch and Heading Mounting Angles of the IMU for Land Vehicular GNSS/INS Integrated System. IEEE Trans. Intell. Transp. Syst. 2020. early access. [Google Scholar]
- Xue, H.; Guo, X.; Zhou, Z.; Wang, K. In-motion alignment algorithm for vehicle carried sins based on odometer aiding. J. Navig. 2017, 70, 1349–1366. [Google Scholar] [CrossRef]
- Wu, Y. Versatile land navigation using inertial sensors and odometry: Self-calibration, in-motion alignment and positioning. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 16–17 September 2014; pp. 1–19. [Google Scholar]
- Huttner, F.; Kalkkuhl, J.; Reger, J. Offset and Misalignment Estimation for the Online Calibration of an MEMS-IMU Using FIR-Filter Modulating Functions. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24 August 2018; pp. 1427–1433. [Google Scholar]
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: Norwood, MA, USA, 2013. [Google Scholar]
- ISO 8855. Road Vehicles—Vehicle Dynamics and Road-Holding Ability– Vocabulary; Tech. Rep. Geneva; CH: International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Wendel, J. Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation; Oldenbourg Verlag: München, Germany, 2011. [Google Scholar]
- Quinchia, A.G.; Falco, G.; Falletti, E.; Dovis, F.; Ferrer, C. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems. Sensors 2013, 13, 9549–9588. [Google Scholar] [CrossRef] [Green Version]
- Amirsadri, A.; Kim, J.; Petersson, L.; Trumpf, J. Practical considerations in precise calibration of a low-cost MEMS IMU for road-mapping applications. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 881–888. [Google Scholar]
- Rodrigo Marco, V.; Kalkkuhl, J.; Raisch, J. EKF for simultaneous vehicle motion estimation and IMU bias calibration with observability-based adaptation. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 6309–6316. [Google Scholar]
- Anderson, B.D.; Johnson, C.R., Jr. Exponential convergence of adaptive identification and control algorithms. Automatica 1982, 18, 1–13. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Johnson, C.R., Jr.; Bitmead, R.R.; Anderson, B.D. Exponential convergence of recursive least squares with exponential forgetting factor. Syst. Control Lett. 1982, 2, 77–82. [Google Scholar] [CrossRef]
- Rhode, S. Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation; KIT Scientific Publishing: Karlsruhe, Germany, 2018; Volume 62. [Google Scholar]
- Rodrigo Marco, V.; Kalkkuhl, J.; Raisch, J.; Seel, T. Regularized adaptive Kalman filter for non-persistently excited systems. 2020. Submitted to Automatica. [Google Scholar]
- Zhang, Q. Adaptive Kalman filter for actuator fault diagnosis. Automatica 2018, 93, 333–342. [Google Scholar] [CrossRef]
- Schramm, D.; Hiller, M.; Bardini, R. Vehicle Dynamics—Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ticlea, A. Techniques D’Immersion Pour l’Estimation Non Linéaire-Application aux Systèmes de Puissance. Ph.D. Thesis, Institut National Polytechnique de Grenoble-INPG, Grenoble, France, 2006. [Google Scholar]
- Jazwinski, A.H. Stochastic Processes and Filtering Theory; Dover Publications, Inc.: Mineola, NY, USA, 2007. [Google Scholar]
- Simon, D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. 2010, 4, 1303–1318. [Google Scholar] [CrossRef] [Green Version]
- Rohac, J.; Sipos, M.; Simanek, J. Calibration of low-cost triaxial inertial sensors. IEEE Instrum. Meas. Mag. 2015, 18, 32–38. [Google Scholar] [CrossRef]
- Tedaldi, D.; Pretto, A.; Menegatti, E. A robust and easy to implement method for IMU calibration without external equipments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3042–3049. [Google Scholar]
Parameter | M1 | M2 | M3 | Mean |
---|---|---|---|---|
0.100 | 0.128 | 0.122 | 0.117 | |
−1.178 | −1.158 | −1.177 | −1.171 | |
0.265 | 0.292 | 0.320 | 0.292 |
Parameter | Value |
---|---|
R | diag([2 × 10, 2 × 10, 2 × 10, 1 × 10, 1 × 10, 1 × 10]) |
diag([3.0625 × 10, 3.0625 × 10, 3.0625 × 10]) | |
[0, 0, 0] | |
diag([3.2653 × 10, 3.2653 × 10, 3.2653 × 10]) | |
Parameter | M1 | M2 | M3 | M4 | M5 | M6 | M7 | Max. Diff. | Mean |
---|---|---|---|---|---|---|---|---|---|
−0.187 | −0.188 | −0.193 | −0.193 | −0.191 | −0.193 | −0.195 | 0.008 | −0.192 | |
0.011 | 0.012 | 0.006 | 0.006 | 0.007 | 0.008 | 0.005 | 0.007 | 0.009 | |
0.434 | 0.373 | 0.367 | 0.367 | 0.402 | 0.401 | 0.394 | 0.067 | 0.396 |
Parameter | Value |
---|---|
Q | diag([]) |
R (A) | diag([]) |
R (B) | diag([]) |
diag([]) | |
diag([]) | |
diag([]) | |
Misalignment Angle | |||
---|---|---|---|
−0.192 | 0.117 | ≈−0.309 | |
0.009 | −1.171 | ≈1.180 | |
0.396 | 0.292 | ≈0.104 |
Misalignment Angle | |||
---|---|---|---|
−0.313 | −0.278 | −0.300 | |
1.236 | 1.184 | 1.183 | |
0.037 | 0.058 | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo Marco, V.; Kalkkuhl, J.; Raisch, J.; Seel, T. A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles. Sensors 2021, 21, 7. https://doi.org/10.3390/s21010007
Rodrigo Marco V, Kalkkuhl J, Raisch J, Seel T. A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles. Sensors. 2021; 21(1):7. https://doi.org/10.3390/s21010007
Chicago/Turabian StyleRodrigo Marco, Vicent, Jens Kalkkuhl, Jörg Raisch, and Thomas Seel. 2021. "A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles" Sensors 21, no. 1: 7. https://doi.org/10.3390/s21010007
APA StyleRodrigo Marco, V., Kalkkuhl, J., Raisch, J., & Seel, T. (2021). A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles. Sensors, 21(1), 7. https://doi.org/10.3390/s21010007