Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths
<p>Spectral attenuation of the tested ultra-low loss pure silica core (ULL-PSC) fiber before irradiation.</p> "> Figure 2
<p>Radial distributions of chemical elements measured by EDX along the ULL-PSC fiber diameter: Fluorine (left vertical axis) and chlorine (right vertical axis). The continuous blue lines limit the fiber core zone and the dashed ones mark the presence of an inner cladding (where the evanescent part of the fundamental mode propagates) revealed by those measurements.</p> "> Figure 3
<p>Experimental setup for radiation induced attenuation (RIA) measurements at the MOPERIX X-ray facility. The black continuous lines represent the rad-hardened fibers used to transport the signal.</p> "> Figure 4
<p>RIA growth kinetics at (<b>a</b>) 1310 nm and (<b>b</b>) 1550 nm as a function of the dose during the steady state X-ray irradiation (175 mGy/s, room temperature) of the four tested samples: P-doped (blue full triangles), Ge-doped (red full squares), F-doped (green empty circles—F1, black full circles—F2), and ULL-PSC (pink empty diamonds) optical fibers. In (<b>c</b>) and (<b>d</b>) are illustrated the RIA recovery kinetics after the end of the irradiation for the different fibers at 1310 nm and 1550 nm, respectively.</p> "> Figure 5
<p>ULL-PSC RIA kinetics (<b>a</b>) as a function of the dose during the irradiation and (<b>b</b>) as a function of the time during the recovery, at 1310 nm (continuous lines) and 1550 nm (dashed lines), up to TID of 2 kGy, for three dose-rates: 10 (black curves), 40 (red curves), and 175 mGy/s (blue curves—results already reported in <a href="#sensors-20-07254-f004" class="html-fig">Figure 4</a>). In the inset, normalized RIA during the recovery phase.</p> "> Figure 5 Cont.
<p>ULL-PSC RIA kinetics (<b>a</b>) as a function of the dose during the irradiation and (<b>b</b>) as a function of the time during the recovery, at 1310 nm (continuous lines) and 1550 nm (dashed lines), up to TID of 2 kGy, for three dose-rates: 10 (black curves), 40 (red curves), and 175 mGy/s (blue curves—results already reported in <a href="#sensors-20-07254-f004" class="html-fig">Figure 4</a>). In the inset, normalized RIA during the recovery phase.</p> "> Figure 6
<p>ULL-PSC spectral RIA (<b>a</b>) as a function of the dose during the irradiation and (<b>b</b>) as a function of the time delay from the irradiation end during the recovery phase, the dose-rate being 175 mGy/s. The arrows indicate the time that elapses.</p> "> Figure 7
<p>Spectral decomposition of the RIA acquired at the highest dose (2 kGy) and dose-rate (175 mGy/s): experimental data (full black squares), fitted curve (red continuous line), which is the sum of two Gaussian bands (dashed blue and dotted pink lines).</p> "> Figure 8
<p>Normalized Raman spectra acquired in the fiber core of the ULL-PSC (continuous pink line with squares), F1 (blue continuous line) and F2 (black dashed line) samples. In the inset, a zoom of the main band.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Samples
2.2. Irradiation Tests
2.3. Raman Spectroscopy
3. Results
3.1. Radiation Induced Attenuation
3.2. Dose-Rate Dependence
3.3. Origin of the Induced Attenuation
3.4. Self-Trapped Holes (STH) Yield and Structural Disorder
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.corning.com/ (accessed on 1 July 2020).
- Tamura, Y.; Sakuma, H.; Morita, K.; Suzuki, M.; Yamamoto, Y.; Shimada, K.; Honma, Y.; Sohma, K.; Fujii, T.; Hasegawa, T. The First 0.14-dB/km Loss Optical Fiber and its Impact on Submarine Transmission. J. Light. Technol. 2018, 36, 44–49. [Google Scholar] [CrossRef]
- Delepine-Lesoille, S.; Girard, S.; Landolt, M.; Bertrand, J.; Planes, I.; Boukenter, A.; Marin, E.; Humbert, G.; Leparmentier, S.; Auguste, J.-L.; et al. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors 2017, 17, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 2018, 20, 093001. [Google Scholar] [CrossRef] [Green Version]
- Di Francesca, D.; Brugger, M.; Vecchi, G.L.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Robin, T.; Kadi, Y. Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. J. Light. Technol. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Hoehr, C.; Trinczek, M.; Vidalot, J.; Paillet, P.; Bélanger-Champagne, C.; Mekki, J.; Balcon, N.; Vecchi, G.L.; et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors 2020, 20, 4510. [Google Scholar] [CrossRef]
- Lancry, M.; Babu, B.H.; Ollier, N.; Bertrand, P. Radiation hardening of silica glass through fictive temperature reduction. Int. J. Appl. Glas. Sci. 2017, 8, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Alessi, A.; Girard, S.; Marcandella, C.; Vaccaro, L.; Cannas, M.; Boukenter, A.; Ouerdane, Y. Influence of the Manufacturing Process on the Radiation Sensitivity of Fluorine-Doped Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2012, 59, 760–766. [Google Scholar] [CrossRef]
- Nagasawa, K.; Hoshi, Y.; Ohki, Y.; Yahagi, K. Improvement of radiation resistance of pure silica core fibres by hydrogen treatment. Jpn. J. Appl. Phys. 1985, 27, 1224–1228. [Google Scholar] [CrossRef]
- Humbach, O.; Fabian, H.; Grzesik, U.; Haken, U.; Heitmann, W. Analysis of OH absorption bands in synthetic silica. J. Non Crystalline Solids 1996, 203, 19–26. [Google Scholar] [CrossRef]
- Kuhnhenn, J.; Weinand, U.; Morana, A.; Girard, S.; Marin, E.; Périsse, J.; Genot, J.S.; Grelin, J.; Hutter, L.; Mélin, G.; et al. Gamma radiation tests of radiation-hardened fiber bragg grating-based sensors for radiation environments. IEEE Trans. Nucl. Sci. 2017, 64, 2307–2311. [Google Scholar] [CrossRef]
- Guillermain, E.; Aikawa, K.; Kuhnhenn, J.; Ricci, D.; Weinand, U. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN. J. Light. Technol. 2015, 33, 4878–4884. [Google Scholar] [CrossRef]
- Morana, A.; Planes, I.; Girard, S.; Cangialosi, C.; Delepine-Lesoille, S.; Marin, E.; Boukenter, A.; Ouerdane, Y. Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors. IEEE Trans. Nucl. Sci. 2018, 65, 111–118. [Google Scholar] [CrossRef]
- Planes, I.; Girard, S.; Boukenter, A.; Marin, E.; Delepine-Lesoille, S.; Marcandella, C.; Ouerdane, Y. Steady γ-Ray Effects on the Performance of PPP-BOTDA and TW-COTDR Fiber Sensing. Sensors 2017, 17, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolo, S.; Marin, E.; Cannas, M.; Boukenter, A.; Ouerdane, Y.; Périsse, J.; Macé, J.-R.; Bauer, S.; Marcandella, C.; Paillet, P.; et al. Radiation effects on optical frequency domain reflectometry fiber-based sensor. Opt. Lett. 2015, 40, 4571–4574. [Google Scholar] [CrossRef] [Green Version]
- Morana, A.; Girard, S.; Marin, E.; Vidalot, J.; Cebollada, A.; Mélin, G.; Champavère, A.; Robin, T.; Alessi, A.; Boukenter, A.; et al. Performances of Radiation-Hardened Single-Ended Raman Distributed Temperature Sensors Using Commercially Available Fibers. IEEE Trans. Nucl. Sci. 2019, 67, 305–311. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 1983, 54, 3743. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Ouerdane, Y.; Kadi, Y.; Brugger, M.; Boukenter, A. Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous-Doped Optical Fibers. Phys. Status Solidi A 2019, 216. [Google Scholar] [CrossRef]
- Di Francesca, D.; Toccafondo, I.; Vecchi, G.L.; Calderini, S.; Girard, S.; Alessi, A.; Ferraro, R.; Danzeca, S.; Kadi, Y.; Brugger, M. Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Trans. Nucl. Sci. 2018, 65, 1639–1644. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Di Francesca, D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Kashaykin, P.F.; Tomashuk, A.L.; Khopin, V.F.; Gur’Yanov, A.N.; Semjonov, S.L.; Dianov, E.M.; Semenov, S.L. New radiation colour centre in germanosilicate glass fibres. Quantum Electron. 2018, 48, 1143–1146. [Google Scholar] [CrossRef]
- Dianov, E.M.; Karpechev, V.N.; Sokolov, V.O.; Sulimov, V.B.; Chernov, P.V.; Kornienko, L.S.; Morozova, I.O.; Rybaltovskii, A.O. Spectroscopic Manifestations of Self-Trapped Holes in Silica Theory and Experiment. Phys. Status Solidi B 1989, 156, 663–675. [Google Scholar] [CrossRef]
- De Michele, V.; Morana, A.; Campanella, C.; Vidalot, J.; Alessi, A.; Boukenter, A.; Cannas, M.; Paillet, P.; Ouerdane, Y.; Girard, S. Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Trans. Nucl. Sci. 2020, 67, 1650–1657. [Google Scholar] [CrossRef]
- De Michele, V.; Marcandella, C.; Vidalot, J.; Paillet, P.; Morana, A.; Cannas, M.; Boukenter, A.; Marin, E.; Ouerdane, Y.; Girard, S. Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed X-ray irradiation. J. Appl. Phys. 2020, 128, 103101. [Google Scholar] [CrossRef]
- Griscom, D.L.; Gingerich, M.E.; Friebele, E. Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers. IEEE Trans. Nucl. Sci. 1994, 41, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Kashaykin, P.F.; Tomashuk, A.; Salgansky, M.Y.; Guryanov, A.N.; Dianov, E.M. Anomalies and peculiarities of radiation-induced light absorption in pure silica optical fibers at different temperatures. J. Appl. Phys. 2017, 121, 213104. [Google Scholar] [CrossRef]
- Kashaykin, P.; Tomashuk, A.; Azanova, I.; Vokhmyanina, O.; Dimakova, T.; Maltsev, I.; Sharonova, Y.; Pospelova, E.; Tatsenko, O.; Filippov, A.; et al. Radiation induced attenuation in pure silica polarization maintaining fibers. J. Non Cryst. Solids 2019, 508, 26–32. [Google Scholar] [CrossRef]
- Griscom, D.L. gamma-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes? J. Non Cryst. Solids 2004, 349, 139. [Google Scholar] [CrossRef]
- Girard, S.; Griscom, D.; Baggio, J.; Brichard, B.; Berghmans, F. Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes. J. Non Cryst. Solids 2006, 352, 2637–2642. [Google Scholar] [CrossRef]
- Griscom, D.L. Self-trapped holes in amorphous silicon dioxide. Phys. Rev. B 1989, 40, 4224. [Google Scholar] [CrossRef]
- Lancry, M.; Régnier, E.; Bertrand, P. Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Prog. Mater. Sci. 2012, 57, 63–94. [Google Scholar] [CrossRef]
- Martinet, C.; Martinez, V.; Coussa, C.; Champagnon, B.; Tomozawa, M. Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy. J. Appl. Phys. 2008, 103, 083506. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Saito, K.; Ikushima, A.J. Fictive-temperature-dependence of photoinduced self-trapped holes in a-SiO2. Phys. Rev. B. 2003, 68, 153204. [Google Scholar] [CrossRef]
- Wang, R.P.; Tai, N.; Saito, K.; Ikushima, A.J. Fluorine-doping concentration and fictive temperature dependence of self-trapped holes in SiO2 glasses. J. Appl. Phys. 2005, 98, 023701. [Google Scholar] [CrossRef] [Green Version]
- Griscom, D.L. Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry. J. Non Cryst. Solids 2006, 352, 2601–2617. [Google Scholar] [CrossRef]
- Lines, M. Can the minimum attenuation of fused silica be significantly reduced by small compositional variations? I. Alkali metal dopants. J. Non Cryst. Solids 1994, 171, 209–218. [Google Scholar] [CrossRef]
- Lines, M. Can the minimum attenuation of fused silica be significantly reduced by small compositional variations? II. Combined fluorine and alkali metal dopants. J. Non Cryst. Solids 1994, 171, 219–227. [Google Scholar] [CrossRef]
- Corning Incorporated. Alkali and Fluorine Doped Optical Fiber. U.S. Patent US 7,088,900 B1, 8 August 2006.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morana, A.; Campanella, C.; Vidalot, J.; De Michele, V.; Marin, E.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Paillet, P.; Girard, S. Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors 2020, 20, 7254. https://doi.org/10.3390/s20247254
Morana A, Campanella C, Vidalot J, De Michele V, Marin E, Reghioua I, Boukenter A, Ouerdane Y, Paillet P, Girard S. Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors. 2020; 20(24):7254. https://doi.org/10.3390/s20247254
Chicago/Turabian StyleMorana, Adriana, Cosimo Campanella, Jeoffray Vidalot, Vincenzo De Michele, Emmanuel Marin, Imène Reghioua, Aziz Boukenter, Youcef Ouerdane, Philippe Paillet, and Sylvain Girard. 2020. "Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths" Sensors 20, no. 24: 7254. https://doi.org/10.3390/s20247254
APA StyleMorana, A., Campanella, C., Vidalot, J., De Michele, V., Marin, E., Reghioua, I., Boukenter, A., Ouerdane, Y., Paillet, P., & Girard, S. (2020). Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors, 20(24), 7254. https://doi.org/10.3390/s20247254