A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography
<p>Sensor design of multichannel photoplethysmogram (PPG) sensor: (<b>a</b>) photograph of one of the four PPG sensors, (<b>b</b>) plan schematic view of one of the four PPG sensors and (<b>c</b>) side view of one sensor.</p> "> Figure 2
<p>Multichannel sensors within a sleeve—for clarity the four sensors A, B, C and D are shown outside of the sleeve.</p> "> Figure 3
<p>Experimental setup for multichannel PPG measurements (IR—infrared, LED—light emitting diode, SPD—selective photodiode, TIA—transimpedance amplifier, DAQ—data acquisition card, PC—personal computer).</p> "> Figure 4
<p>Schematic setup of measuring the light transmission (<b>a</b>) and reception (<b>b</b>).</p> "> Figure 5
<p>Testing all four sensors in the same position on the wrist.</p> "> Figure 6
<p>(<b>a</b>) Average (over 5 s data) FFT of red PPG signal showing the signal region (heart rate) and noise region for calculating SNR (<b>b</b>) signal in the time domain.</p> "> Figure 7
<p>Light transmission power of all 16 fibres used in the multichannel sensor using the configuration in <a href="#sensors-20-06568-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 8
<p>Received light of each fibre deployed in the multichannel sensor using the mirror configuration in <a href="#sensors-20-06568-f004" class="html-fig">Figure 4</a>b. The pairs, e.g., 1/2 indicates the transmit fibre first and receive fibre second for each sensor A–D.</p> "> Figure 9
<p>Healthy volunteer (Participant P9) example traces, (<b>a</b>) red channel PPG, sensor A; (<b>b</b>) IR channel “PPG,” sensor A; (<b>c</b>) red channel PPG, sensor B; (<b>d</b>) IR channel PPG, sensor B; (<b>e</b>) SpO<sub>2</sub> fibre sensor B and Masimo reference device; (<b>f</b>) red channel PPG, sensor C; (<b>g</b>) IR channel “PPG,” sensor C; (<b>h</b>) red channel PPG, sensor D; (<b>i</b>) IR channel, sensor D; (<b>j</b>) SpO<sub>2</sub> sensor D and Masimo reference device. Note: Those traces with “PPG” designation indicate that a PPG cannot be clearly seen and hence an SpO<sub>2</sub> calculated trace is not presented.</p> "> Figure 9 Cont.
<p>Healthy volunteer (Participant P9) example traces, (<b>a</b>) red channel PPG, sensor A; (<b>b</b>) IR channel “PPG,” sensor A; (<b>c</b>) red channel PPG, sensor B; (<b>d</b>) IR channel PPG, sensor B; (<b>e</b>) SpO<sub>2</sub> fibre sensor B and Masimo reference device; (<b>f</b>) red channel PPG, sensor C; (<b>g</b>) IR channel “PPG,” sensor C; (<b>h</b>) red channel PPG, sensor D; (<b>i</b>) IR channel, sensor D; (<b>j</b>) SpO<sub>2</sub> sensor D and Masimo reference device. Note: Those traces with “PPG” designation indicate that a PPG cannot be clearly seen and hence an SpO<sub>2</sub> calculated trace is not presented.</p> "> Figure 10
<p>Bland–Altman plot of the difference of Masimo and multichannel SpO<sub>2</sub> PPG sensor against the mean of Masimo and multichannel SpO<sub>2</sub> PPG. Mean difference and limits of agreements (LOAs) are shown as solid lines while dotted lines show the confidence limits of each.</p> "> Figure A1
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> "> Figure A1 Cont.
<p>Red and IR signals from each sensor (A, B, C and D) of all participants (1–10), and oxygen saturation (SpO<sub>2</sub>) readings from the sensors that provided both photoplethysmogram (PPG) signals.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Optical Fibre Sensor Design
2.3. Sleeve Design
2.4. Experimental Setup
2.5. Experimental Plan
2.5.1. Evaluation of Transmit/Receive Properties of Each Channel
2.5.2. In Vivo Healthy Volunteer Study
2.6. Signal Quality
3. Results
3.1. Evaluation of Transmit/Receive Properties of Each Channel
3.2. In Vivo Healthy Volunteer Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
P# | Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|---|
POF | Masimo | |||||||
1 | A | Red | 431.4 | – | – | – | – | 98 |
IR | 203.5 | – | – | – | ||||
B | Red | 517.7 | 0.4 | 0.08 | 7.99 | – | 99 | |
IR | 203.6 | – | – | – | ||||
C | Red | 486.4 | 0.33 | 0.07 | 12.79 | – | 99.1 | |
IR | 200.15 | – | – | – | ||||
D | Red | 405 | 0.97 | 0.24 | 11.59 | 98.1 | 98 | |
IR | 193.6 | 0.13 | 0.06 | 6.32 | ||||
2 | A | Red | 331.2 | 0.36 | 0.11 | 6.31 | – | 97.1 |
IR | 203.97 | – | – | – | ||||
B | Red | 393.5 | 1.1 | 0.28 | 3.87 | 96.9 | 96.6 | |
IR | 201.45 | 0.9 | 0.04 | 2.35 | ||||
C | Red | 499.15 | 0.22 | 0.045 | 4.99 | – | 97.3 | |
IR | 194.75 | – | – | – | ||||
D | Red | 244 | 0.475 | 0.19 | 3.94 | – | 97 | |
IR | 197.6 | – | – | – | ||||
3 | A | Red | 438.5 | – | – | – | – | 97.7 |
IR | 198.46 | – | – | – | ||||
B | Red | 512.1 | 0.21 | 0.04 | 3.95 | – | 98.3 | |
IR | 204.2 | – | – | – | ||||
C | Red | 515.3 | 0.32 | 0.06 | 9.54 | – | 98 | |
IR | 201.13 | – | – | – | ||||
D | Red | 311.1 | 0.53 | 0.17 | 5.89 | 97.6 | 97.4 | |
IR | 188.05 | 0.11 | 0.06 | 6.39 | ||||
4 | A | Red | 394.70 | 0.22 | 0.055 | 4.44 | – | 98 |
IR | 185.18 | – | – | – | ||||
B | Red | 455.6 | 0.28 | 0.06 | 5.28 | 99 | 99 | |
IR | 203.26 | 0.09 | 0.05 | 7.07 | ||||
C | Red | 485.90 | – | – | – | – | 98 | |
IR | 197.16 | – | – | – | ||||
D | Red | 385.10 | 0.26 | 0.07 | 6.75 | 99.1 | 99 | |
IR | 185.40 | 0.12 | 0.07 | 6.94 | ||||
5 | A | Red | 719 | – | – | – | – | 97.7 |
IR | 195.65 | – | – | – | ||||
B | Red | 477.65 | 0.43 | 0.09 | 10.96 | 97.8 | 98.1 | |
IR | 193.62 | 0.087 | 0.04 | 7.51 | ||||
C | Red | 333.10 | – | – | – | – | 98.2 | |
IR | 190.03 | – | – | – | ||||
D | Red | 199.30 | 0.34 | 0.17 | 2.41 | – | 99 | |
IR | 180.90 | – | – | – | ||||
6 | A | Red | 398.7 | 0.24 | 0.06 | 5.50 | – | 98.9 |
IR | 186.87 | – | – | – | ||||
B | Red | 405.2 | 0.66 | 0.16 | 5.36 | – | 99 | |
IR | 191.04 | – | – | – | ||||
C | Red | 305 | 0.52 | 0.17 | 5.15 | – | 100 | |
IR | 191.7 | – | – | – | ||||
D | Red | 428.50 | 2.73 | 0.64 | 4.1 | 99.3 | 99 | |
IR | 185.80 | 0.13 | 0.07 | 4.47 | ||||
7 | A | Red | 437 | 0.32 | 0.07 | 7.33 | 99.5 | 100 |
IR | 191.6 | 0.11 | 0.06 | 5.99 | ||||
B | Red | 438.48 | 0.28 | 0.06 | 3.95 | – | 99 | |
IR | 192.72 | – | – | – | ||||
C | Red | 419.9 | – | – | – | – | 100 | |
IR | 201.42 | – | – | – | ||||
D | Red | 474.60 | 0.29 | 0.06 | 3.20 | – | 100 | |
IR | 185.70 | – | – | – | ||||
8 | A | Red | 473.88 | 0.29 | 0.06 | 8.04 | – | 98 |
IR | 181.40 | – | – | – | ||||
B | Red | 356.90 | 0.44 | 0.12 | 5.49 | – | 98 | |
IR | 187.15 | – | – | – | ||||
C | Red | 385.40 | 0.52 | 0.13 | 5.80 | 98.9 | 98.7 | |
IR | 180.26 | 0.11 | 0.06 | 5.30 | ||||
D | Red | 325.40 | 0.37 | 0.11 | 4.29 | – | 97.4 | |
IR | 180.25 | – | – | – | ||||
9 | A | Red | 502.84 | 0.20 | 0.04 | 6.63 | – | 98.9 |
IR | 186 | – | – | – | ||||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 | |
IR | 191.29 | 0.15 | 0.08 | 4.17 | ||||
C | Red | 475.80 | – | – | – | – | 99 | |
IR | 188.14 | – | – | – | ||||
D | Red | 408.78 | 0.52 | 0.13 | 5.98 | 99.5 | 99 | |
IR | 178.12 | 0.10 | 0.06 | 4.29 | ||||
10 | A | Red | 723.36 | 0.20 | 0.03 | 9.23 | – | 99 |
IR | 188.22 | – | – | – | ||||
B | Red | 389.73 | 0.26 | 0.07 | 8.84 | – | 97 | |
IR | 199.85 | – | – | – | ||||
C | Red | 401.31 | 0.51 | 0.13 | 8.30 | – | 98.1 | |
IR | 199.34 | – | – | – | ||||
D | Red | 385.26 | 0.24 | 0.06 | 6.86 | 97.3 | 97.5 | |
IR | 182.33 | 0.1 | 0.05 | 6.27 |
References
- Teichmann, D.; Kuhn, A.; Leonhardt, S.; Walter, M. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array. Sensors 2014, 14, 1039–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehler, K.; Drenowatz, C. Monitoring energy expenditure using a multi-sensor device-Applications and limitations of the sense wear armband in athletic populations. Front. Physiol. 2017, 8, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandian, P.S.; Mohanavelu, K.; Safeer, K.P.; Kotresh, T.M.; Shakunthala, D.T.; Gopal, P. Smart Vest: Wearable multi-parameter remote physiological monitoring system. Med. Eng. Phys. 2008, 30, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Grossman, P. The LifeShirt: A multi-function ambulatory system monitoring health, disease, and medical intervention in the real world. Stud. Health Technol. Inform. 2004, 108, 133–141. [Google Scholar]
- Quandt, B.M.; Braun, F.; Ferrario, D.; Rossi, R.M.; Scheel-Sailer, A.; Wolf, M.; Boesel, L.F. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface 2017, 14, 128. [Google Scholar]
- Selm, B.; Gürel, E.A.; Rothmaier, M.; Rossi, R.M.; Scherer, L.J. Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles. J. Intell. Mater. Syst. Struct. 2010, 21, 1061–1071. [Google Scholar] [CrossRef]
- Quandt, B.M.; Boesel, L.F.; Rossi, R.M. Polymer optical fibres in healthcare: Solutions, applications and implications. A perspective. Polym. Int. 2018, 67, 1150–1154. [Google Scholar] [CrossRef]
- Scanaill, C.N.; Carew, S.; Barralon, P.; Noury, N.; Lyons, D.; Lyons, G.M. A review of approaches to mobility telemonitoring of the elderly in their living environment. Ann. Biomed. Eng. 2006, 34, 547–563. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef]
- Yoshiya, I.; Shimada, Y.; Tanaka, K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med. Biol. Eng. Comput. 1980, 18, 27–32. [Google Scholar] [CrossRef]
- Abay, T.Y.; Kyriacou, P.A. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. IEEE Trans. Biomed. Eng. 2015, 62, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Rusch, T.; Sankar, R.; Scharf, J. Signal processing methods for pulse oximetry. Comput. Biol. Med. 1996, 26, 143–159. [Google Scholar] [CrossRef]
- He, D.; Morgan, S.; Trachanis, D.; Hese, J.; Drogoudis, D.; Fummi, F.; Stefanni, F.; Guarnieri, V.; Hayes-Gill, B.R. A single-chip CMOS pulse oximeter with on-chip lock-in detection. Sensors (Switzerland) 2015, 15, 17076–17088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization (ISO). Medical Electrical Equipment—Part 2-61: Particular Requirements for Basic Safety and Essential Performance of Pulse Oximeter Equipment; ISO 80601-2-61; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Kyriacou, P.A. Pulse oximetry in the oesophagus. Physiol. Meas. 2006, 27, R1–R35. [Google Scholar] [CrossRef] [PubMed]
- Grubb, M.R.; Carpenter, J.; A Crowe, J.; Teoh, J.; Marlow, N.; Ward, C.; Mann, C.; Sharkey, D.; Hayes-Gill, B.R. Forehead reflectance photoplethysmography to monitor heart rate: Preliminary results from neonatal patients. Physiol. Meas. 2014, 35, 881–893. [Google Scholar] [CrossRef]
- Singh, J.K.; Kamlin, C.O.F.; Morley, C.J.; O’Donnell, C.P.; Donath, S.; Davis, P.G. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit. J. Paediatr. Child Health 2008, 44, 273–275. [Google Scholar] [CrossRef]
- Wang, L.; Lo, B.P.; Yang, G.-Z. Multichannel Reflective PPG Earpiece Sensor With Passive Motion Cancellation. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 235–241. [Google Scholar] [CrossRef]
- Lee, Y.K.; Jo, J.; Shin, H.S. Development and Evaluation of a Wristwatch-Type Photoplethysmography Array Sensor Module. IEEE Sens. J. 2012, 13, 1459–1463. [Google Scholar] [CrossRef]
- Mendelson, Y.; Dao, D.K.; Chon, K.H. Multi-channel pulse oximetry for wearable physiological monitoring. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–6. [Google Scholar]
- Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Barrett, L.; Esliger, D.; Hayes, M.; Akbare, S.; Achart, J.; Kuoch, S. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise. Sensors 2015, 15, 25681–25702. [Google Scholar] [CrossRef]
- Rothmaier, M.; Selm, B.; Spichtig, S.; Haensse, D.; Wolf, M. Photonic textiles for pulse oximetry. Opt. Express 2008, 16, 12973–12986. [Google Scholar] [CrossRef] [PubMed]
- Krehel, M.; Wolf, M.; Boesel, L.F.; Rossi, R.M.; Bona, G.-L.; Scherer, L.J. Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 2014, 5, 2537–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Correia, R.; Ballaji, H.; Korposh, S.; Hayes-Gill, B.; Morgan, S.P. Optical Fibre-Based Pulse Oximetry Sensor with Contact Force Detection. Sensors 2018, 18, 3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusznier, J.; Wojtkowski, W. Analysis of Possibilities of the Optical Fibers Usage in the Microprocessor Pulse—Oximeter. IFAC-PapersOnLine 2019, 52, 556–561. [Google Scholar] [CrossRef]
- Davenport, J.J.; Hickey, M.; Phillips, J.P.; Kyriacou, P.A. Method for producing angled optical fiber tips in the laboratory. Opt. Eng. 2016, 55, 026120. [Google Scholar] [CrossRef]
- Reips, U.-D.; Funke, F. Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. Behav. Res. Methods 2008, 40, 699–704. [Google Scholar] [CrossRef]
- De Felice, C.; Latini, G.; Vacca, P.; Kopotic, R.J. The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur. J. Nucl. Med. Mol. Imaging 2002, 161, 561–562. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nishiyama, J.; Suzuki, T. Use of perfusion index from pulse oximetry to determine efficacy of stellate ganglion block. Local Reg. Anesth. 2012, 5, 9–14. [Google Scholar] [CrossRef] [Green Version]
- National Instruments. Understanding Frequency Performance Specifications—National Instruments. 2019. Available online: http://www.ni.com/product-documentation/3359/en/ (accessed on 31 October 2020).
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Kaur, P.; Stoltzfus, J.C. Bland–Altman plot: A brief overview. Int. J. Acad. Med. 2017, 3, 110. [Google Scholar]
- Fronheiser, M.P.; Ermilov, S.A.; Brecht, H.-P.; Conjusteau, A.; Su, R.; Mehta, K.; Oraevsky, A.A. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 2010, 15, 021305. [Google Scholar] [PubMed] [Green Version]
- Ruggiero, E.; Castro, S.A.-D.; Habtemariam, A.; Salassa, L. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: New opportunities and challenges in medicinal inorganic photochemistry. Dalton Trans. 2016, 45, 13012–13020. [Google Scholar] [PubMed] [Green Version]
- Liu, J.; Yan, B.P.-Y.; Dai, W.-X.; Ding, X.-R.; Zhang, Y.-T.; Zhao, N. Multi-wavelength photoplethysmography method for skin arterial pulse extraction. Biomed. Opt. Express 2016, 7, 4313–4326. [Google Scholar] [PubMed] [Green Version]
- Tadesse, M.G.; Harpa, R.; Chen, Y.; Wang, L.; Nierstrasz, V.; Loghin, C. Assessing the comfort of functional fabrics for smart clothing using subjective evaluation. J. Ind. Text. 2018, 48, 1310–1326. [Google Scholar]
- Henry, C.; Shipley, L.; Ward, C.; Mirahmadi, S.; Liu, C.; Morgan, S.; Crowe, J.A.; Carpenter, J.; Hayes-Gill, B.; Sharkey, D. Accurate neonatal heart rate monitoring using a new wireless, cap mounted device. Acta Paediatr. 2020. [Google Scholar] [CrossRef]
Sensor | p-Value | |
---|---|---|
Kolmogorov–Smirnov Test (>0.05–Normal Distribution) (≤0.05–Non-Normal Distribution) | Kruskal–Wallis Test (>0.05–No Significant Difference) (≤0.05–Significant Difference) | |
A | 0.01 | 0.223 |
B | <0.001 | |
C | 0.047 | |
D | 0.024 |
Sensor | Signal | P-Pave (nW) | PI (%) | SNR | SpO2 (%) |
---|---|---|---|---|---|
A | Red | 0.3 | 0.08 | 5.27 | 98.2 |
IR | 0.15 | 0.07 | 6.28 | ||
B | Red | 0.32 | 0.07 | 6.50 | 99 |
IR | 0.16 | 0.08 | 6.52 | ||
C | Red | 0.31 | 0.06 | 5.95 | 98.5 |
IR | 0.15 | 0.07 | 6.34 | ||
D | Red | 0.3 | 0.08 | 6.18 | 98.3 |
IR | 0.17 | 0.09 | 6.77 |
Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|
POF | Masimo | ||||||
A | Red | 502.8 | 0.20 | 0.04 | 6.63 | – | 98.9 |
IR | 186.0 | – | – | – | |||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 |
IR | 191.3 | 0.15 | 0.08 | 4.17 | |||
C | Red | 475.8 | – | – | – | – | 99 |
IR | 188.1 | – | – | – | |||
D | Red | 408.9 | 0.52 | 0.13 | 5.98 | 99.5 | 99 |
IR | 178.1 | 0.10 | 0.06 | 4.29 |
P# | Sensor | Signal | DC Level (nW) | P-Pave (nW) | PI (%) | SNR | Average SpO2 (%) | |
---|---|---|---|---|---|---|---|---|
POF | Masimo | |||||||
1 | D | Red | 405.0 | 0.97 | 0.24 | 11.59 | 98.1 | 98 |
IR | 193.6 | 0.13 | 0.06 | 6.32 | ||||
2 | B | Red | 393.5 | 1.1 | 0.28 | 3.87 | 96.9 | 96.6 |
IR | 201.5 | 0.9 | 0.04 | 2.35 | ||||
3 | D | Red | 311.1 | 0.53 | 0.17 | 5.89 | 97.6 | 97.4 |
IR | 188.1 | 0.11 | 0.06 | 6.39 | ||||
4 | D | Red | 385.1 | 0.26 | 0.07 | 6.75 | 99.1 | 99 |
IR | 185.4 | 0.12 | 0.07 | 6.94 | ||||
B | Red | 455.6 | 0.28 | 0.06 | 5.28 | 99 | 99 | |
IR | 203.3 | 0.09 | 0.05 | 7.07 | ||||
5 | B | Red | 477.7 | 0.43 | 0.09 | 10.96 | 97.8 | 98.1 |
IR | 193.6 | 0.087 | 0.04 | 7.51 | ||||
6 | D | Red | 428.5 | 2.73 | 0.64 | 4.1 | 99.3 | 99 |
IR | 185.8 | 0.13 | 0.07 | 4.47 | ||||
7 | A | Red | 437.0 | 0.32 | 0.07 | 7.33 | 99.5 | 100 |
IR | 191.6 | 0.11 | 0.06 | 5.99 | ||||
8 | C | Red | 385.4 | 0.52 | 0.13 | 5.80 | 98.9 | 98.7 |
IR | 180.3 | 0.11 | 0.06 | 5.30 | ||||
9 | D | Red | 408.8 | 0.52 | 0.13 | 5.98 | 99.5 | 99 |
IR | 178.1 | 0.10 | 0.06 | 4.29 | ||||
B | Red | 420.7 | 0.84 | 0.19 | 7.19 | 98.1 | 98.3 | |
IR | 191.3 | 0.15 | 0.08 | 4.17 | ||||
10 | D | Red | 385.3 | 0.24 | 0.06 | 6.86 | 97.3 | 97.5 |
IR | 182.3 | 0.1 | 0.05 | 6.27 |
Configuration | Sensing Point | PD/LED | LED Power (mW) | References |
---|---|---|---|---|
Textile sleeve | Wrist | 2/2 (1 red and 1 IR) | 14.5 red, 6.8 IR | This study |
Ear-worn platform | Ear | 3/2 IR | 2 | Wang et al. [18] |
Wrist watch | Wrist | 4/4 IR | 2 | Lee et al. [19] |
Elastic headband | Forehead | 1/6 (3 red and 3 IR) | – | Mendelson et al. [20] |
Electronic patch sensor | Forehead, wrist, head | 1/16 (4 red, 4 IR, 4 green, 4 yellow) | – | Alzahrani et al. [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballaji, H.K.; Correia, R.; Korposh, S.; Hayes-Gill, B.R.; Hernandez, F.U.; Salisbury, B.; Morgan, S.P. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors 2020, 20, 6568. https://doi.org/10.3390/s20226568
Ballaji HK, Correia R, Korposh S, Hayes-Gill BR, Hernandez FU, Salisbury B, Morgan SP. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors. 2020; 20(22):6568. https://doi.org/10.3390/s20226568
Chicago/Turabian StyleBallaji, Hattan K., Ricardo Correia, Serhiy Korposh, Barrie R. Hayes-Gill, Francisco U. Hernandez, Byron Salisbury, and Stephen P. Morgan. 2020. "A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography" Sensors 20, no. 22: 6568. https://doi.org/10.3390/s20226568
APA StyleBallaji, H. K., Correia, R., Korposh, S., Hayes-Gill, B. R., Hernandez, F. U., Salisbury, B., & Morgan, S. P. (2020). A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors, 20(22), 6568. https://doi.org/10.3390/s20226568