Machine Learning Improvements to Human Motion Tracking with IMUs
<p>Xsens Avatar with indication of the six body placements in which both inertial data and ground truth 3D position are provided, extracted from [<a href="#B33-sensors-20-06383" class="html-bibr">33</a>].</p> "> Figure 2
<p>Train and test split (RSHO, Right Shoulder; LSHO, Left Shoulder; RUPA, Right Upper Arm; LUPA, Left Upper Arm; RTOE, Right Toe; LTOE, Left Toe).</p> "> Figure 3
<p>“Smart” double integration by a two-Layer LSTM (Acceleration[i], linear acceleration at instant i; <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>Velocity[i], velocity change at instant i; <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>Position, displacement at instant i; LSTM, Long-Short-Term Memory Network Layer).</p> "> Figure 4
<p>Representation of the warm-Start with “integrative” weights methodology—example for the x-axis.</p> "> Figure 5
<p>Representation of the warm-Start with “pre-trained” weights methodology—example for the x-axis.</p> "> Figure 6
<p>Neural network architecture with no type of warm start for three-axis displacement estimate.</p> "> Figure 7
<p>Stacked neural network for simultaneous classification and regression.</p> "> Figure 8
<p>Accuracy of the different used classifiers (SHOE, Stance Hypothesis Optimal Estimation; ARED, Angular Rate Energy; Log-R, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; Dense, Densely Connected Neural Network; LSTM, Single Layer LSTM; CNN + LSTM, Convolutional Layers + LSTM Layers).</p> "> Figure 9
<p>Example of a trial classification using the Random Forest classifier with and without median filtering (blue background, true positives (correctly identified stopped periods); gray background, true negatives (correctly identified periods of movement), purple background, false positives (wrongly labeled as stopped periods); red background, false negatives (wrongly labeled as moving periods)).</p> ">
Abstract
:1. Introduction
- A classification problem: The identification of stationary moments can be used in zero-velocity update algorithms allowing a better estimate of position by permitting the correction of the velocity estimates.
- A regression problem: After identifying the moments in which the IMU is moving, it is essential to understand the translational motion performed by the IMU during those periods. Again, relying solely on the double integration of the acceleration data can lead to wrong estimations of displacements. Using ML techniques, we aim to obtain more robust estimates of displacement.
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. Data Split
3.3. Zero-Velocity Detection
3.3.1. Automatic Labeling of the Qualisys Data
3.3.2. Fixed-Threshold Zero-Velocity Detectors
A: Stance Hypothesis Optimal Estimation (SHOE) Detector
B: Angular Rate Energy (ARED) Detector
3.3.3. ML Methodologies
A: Models
B: Features and Cross-Validation
3.4. Translational Motion Estimates between Stationary Periods
3.4.1. Double Integration with Linear Drift Removal
3.4.2. ML Methodologies to Perform Double Integration
A: Warm-Start with “Integrative Weights”
B: Warm-Start with “Pre-Trained Weights”
C: No Customized Initialization
D: Common Experimental Methodology
3.5. Simultaneous Zero Velocity Detection and Translational Motion Estimate
4. Results
4.1. Zero-Velocity Detection
4.1.1. Automatic Labeling of the Qualisys Data
4.1.2. Zero-Velocity Detectors
4.2. Translational Motion Estimates between Stationary Periods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATE | Absolute Trajectory Error |
CNN | Convolutional Neural Network |
EKF | Extended Kalman Filter |
IMU | Inertial Measurement Unit |
INS | Inertial Navigation System |
LR | Logistic Regression |
LSTM | Long short-term memory |
MAE | Mean Average Error |
ML | Machine Learning |
RMSE | Root-mean-square error |
RF | Random Forest |
SVM | Support Vector Machine |
References
- Lopez-Nava, I.H.; Angelica, M.M. Wearable Inertial Sensors for Human Motion Analysis: A review. IEEE Sens. J. 2016, PP, 7821–7834. [Google Scholar] [CrossRef]
- Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. In Proceedings of the 23th International Conference on Architecture of Computing Systems, Hannover, Germany, 22–23 February 2010; pp. 167–176. [Google Scholar]
- Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morreale, P.A. Wireless sensor network applications in urban telehealth. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; pp. 810–814. [Google Scholar] [CrossRef]
- Winters, J.M.; Wang, Y.; Winters, J.M. Wearable Sensors and Telerehabilitation. IEEE Eng. Med. Biol. Mag. 2003, 22, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Groves, P.D. Navigation using inertial sensors [Tutorial]. IEEE Aerosp. Electron. Syst. Mag. 2015, 30, 42–69. [Google Scholar] [CrossRef]
- Silva do Monte Lima, J.P.; Uchiyama, H.; Taniguchi, R.I. End-to-End Learning Framework for IMU-Based 6-DOF Odometry. Sensors 2019, 19, 3777. [Google Scholar] [CrossRef] [Green Version]
- Solin, A.; Cortes, S.; Rahtu, E.; Kannala, J. Inertial odometry on handheld smartphones. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1–5. [Google Scholar]
- Simon, D. Kalman filtering. Embed. Syst. Program. 2001, 14, 72–79. [Google Scholar]
- Gui, P.; Tang, L.; Mukhopadhyay, S. MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion. In Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 2004–2009. [Google Scholar]
- Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- Solin, A.; Cortes, S.; Rahtu, E.; Kannala, J. PIVO: Probabilistic inertial-visual odometry for occlusion-robust navigation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 616–625. [Google Scholar]
- Cortés, S.; Solin, A.; Kannala, J. Deep learning based speed estimation for constraining strapdown inertial navigation on smartphones. In Proceedings of the 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018; pp. 1–6. [Google Scholar]
- Clark, R.; Wang, S.; Wen, H.; Markham, A.; Trigoni, N. Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Chen, C.; Rosa, S.; Miao, Y.; Lu, C.X.; Wu, W.; Markham, A.; Trigoni, N. Selective sensor fusion for neural visual-inertial odometry. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 10542–10551. [Google Scholar]
- Li, X.F.; Mao, Y.L.; Xie, L.; Chen, J.B.; Song, C.L. Applications of zero-velocity detector and Kalman filter in zero velocity update for inertial navigation system. In Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1760–1763. [Google Scholar]
- Li, L.; Pan, Y.; Lee, J.K.; Ren, C.; Liu, Y.; Grejner-Brzezinska, D.A.; Toth, C.K. Cart-mounted geolocation system for unexploded ordnance with adaptive ZUPT assistance. IEEE Trans. Instrum. Meas. 2012, 61, 974–979. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Xu, X. An IMM-aided ZUPT methodology for an INS/DVL integrated navigation system. Sensors 2017, 17, 2030. [Google Scholar]
- Park, S.Y.; Ju, H.; Park, C.G. Stance phase detection of multiple actions for military drill using foot-mounted IMU. Sensors 2016, 14, 16. [Google Scholar]
- Wagstaff, B.; Kelly, J. LSTM-based zero-velocity detection for robust inertial navigation. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU. IEEE Robot. Autom. Lett. 2019, 5, 399–406. [Google Scholar] [CrossRef]
- Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. AbolDeepIO: A novel deep inertial odometry network for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1941–1950. [Google Scholar] [CrossRef]
- Yan, H.; Shan, Q.; Furukawa, Y. RIDI: Robust IMU double integration. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 621–636. [Google Scholar]
- Feigl, T.; Kram, S.; Woller, P.; Siddiqui, R.H.; Philippsen, M.; Mutschler, C. A Bidirectional LSTM for Estimating Dynamic Human Velocities from a Single IMU. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Chen, C.; Lu, X.; Markham, A.; Trigoni, N. Ionet: Learning to cure the curse of drift in inertial odometry. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 8–14 September 2018. [Google Scholar]
- Chen, C.; Zhao, P.; Lu, C.X.; Wang, W.; Markham, A.; Trigoni, N. Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and On-Device Inference. arXiv 2020, arXiv:2001.04061. [Google Scholar] [CrossRef] [Green Version]
- Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Yan, H.; Herath, S.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, and New Methods. arXiv 2019, arXiv:1905.12853. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Maurice, P.; Malaisé, A.; Amiot, C.; Paris, N.; Richard, G.J.; Rochel, O.; Ivaldi, S. Human movement and ergonomics: An industry-oriented dataset for collaborative robotics. Int. J. Robot. Res. 2019, 38, 1529–1537. [Google Scholar] [CrossRef]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; De Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 2017, 17, 75. [Google Scholar] [CrossRef] [Green Version]
- Skog, I.; Handel, P.; Nilsson, J.O.; Rantakokko, J. Zero-velocity detection—An algorithm evaluation. IEEE Trans. Biomed. Eng. 2010, 57, 2657–2666. [Google Scholar] [CrossRef]
- Wagstaff, B.; Peretroukhin, V.; Kelly, J. Robust Data-Driven Zero-Velocity Detection for Foot-Mounted Inertial Navigation. IEEE Sens. J. 2019, 20, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Buduma, N.; Locascio, N. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Zhang, Z.; Scaramuzza, D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7244–7251. [Google Scholar]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
- Lunt, M. Introduction to statistical modelling: Linear regression. Rheumatology 2015, 54, 1137–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Placement | Accuracy | Precision | Recall |
---|---|---|---|
RSHO | 0.9564 ± 0.0036 | 0.9722 ± 0.0126 | 0.9471 ± 0.0126 |
LSHO | 0.9375 ± 0.0187 | 0.9499 ± 0.0264 | 0.9345 ± 0.0264 |
RUPA | 0.9134 ± 0.0590 | 0.9290 ± 0.0333 | 0.9107 ± 0.0333 |
LUPA | 0.9469 ± 0.0151 | 0.9691 ± 0.0166 | 0.9359 ± 0.0166 |
RTOE | 0.8907 ± 0.0270 | 0.9487 ± 0.0221 | 0.9126 ± 0.0221 |
LTOE | 0.8881 ± 0.0358 | 0.9306 ± 0.0365 | 0.9268 ± 0.0365 |
Total | 0.9222 ± 0.0415 | 0.9499 ± 0.0376 | 0.9279 ± 0.0290 |
Zero-Velocity Classifier | Regressor | Error | p | p | p | || p|| |
---|---|---|---|---|---|---|
None | Double Integration | RMSE (m) | 28.71 ± 24.55 | 22.75 ± 22.03 | 6.60 ± 5.61 | 23.82 ± 16.35 |
MAE (m) | 22.45 ± 19.98 | 17.30 ± 17.25 | 5.25 ± 4.40 | 32.41 ± 22.80 | ||
R | 0.15 ± 0.13 | 0.13 ± 0.15 | 0.06 ± 0.11 | 0.12 ± 0.08 | ||
Random Forest | Double Integration | RMSE (m) | 1.41 ± 1.23 | 0.81 ± 0.62 | 0.69 ± 0.37 | 1.99 ± 1.10 |
MAE (m) | 1.25 ± 1.18 | 0.65 ± 0.45 | 0.57 ± 0.33 | 1.77 ± 1.0 | ||
R | 0.64 ± 0.26 | 0.45 ± 0.26 | 0.20 ± 0.24 | 0.11 ± 0.14 | ||
Random Forest | Double Integration + Drift Correction | RMSE (m) | 0.60 ± 0.39 | 0.56 ± 0.49 | 0.37 ± 0.23 | 1.02 ± 0.45 |
MAE (m) | 0.51 ± 0.37 | 0.47 ± 0.44 | 0.31 ± 0.20 | 0.92 ± 0.43 | ||
R | 0.85 ± 0.13 | 0.63 ± 0.32 | 0.39 ± 0.31 | 0.35 ± 0.31 | ||
6-LSTM | Double Integration | RMSE (m) | 1.25 ± 1.00 | 0.94 ± 0.78 | 0.68 ± 0.40 | 1.90 ± 1.04 |
MAE (m) | 1.08 ± 0.95 | 0.75 ± 0.65 | 0.57 ± 0.34 | 1.67 ± 0.98 | ||
R | 0.62 ± 0.24 | 0.43 ± 0.32 | 0.25 ± 0.28 | 0.09 ± 0.11 | ||
6-LSTM | Double Integration + Drift Correction | RMSE (m) | 0.50 ± 0.31 | 0.51 ± 0.49 | 0.42 ± 0.21 | 0.93 ± 0.44 |
MAE (m) | 0.42 ± 0.28 | 0.43 ± 0.43 | 0.35 ± 0.18 | 0.83 ± 0.39 | ||
R | 0.86 ± 0.12 | 0.63 ± 0.30 | 0.31 ± 0.28 | 0.43 ± 0.13 | ||
6-LSTM | A—“Integrative” | RMSE (m) | 1.63 ± 1.64 | 1.58 ± 2.37 | 1.01 ± 0.89 | 2.68 ± 2.85 |
MAE (m) | 1.44 ± 1.54 | 1.31 ± 2.20 | 0.85 ± 0.80 | 2.38 ± 2.65 | ||
R | 0.57 ± 0.28 | 0.42 ± 0.31 | 0.21 ± 0.27 | 0.09 ± 0.10 | ||
6-LSTM | B—“Pre-trained” (w/drift removal) | RMSE (m) | 0.87 ± 0.59 | 0.95 ± 0.84 | 0.31 ± 0.29 | 1.43 ± 0.91 |
MAE (m) | 0.71 ± 0.55 | 0.78 ± 0.72 | 0.24 ± 0.25 | 1.80 ± 1.29 | ||
R | 0.68 ± 0.24 | 0.51 ± 0.32 | 0.38 ± 0.33 | 0.26 ± 0.30 | ||
6-LSTM | C—No initialization | RMSE (m) | 1.29 ± 0.75 | 0.52 ± 0.2 | 0.35 ± 0.16 | 1.47 ± 0.72 |
MAE (m) | 1.09 ± 0.66 | 0.42 ± 0.19 | 0.29 ± 0.14 | 1.30 ± 0.65 | ||
R | 0.62 ± 0.28 | 0.17 ± 0.16 | 0.09 ± 0.08 | 0.23 ± 0.24 | ||
Stacked Neural Network ( = 0.5) | RMSE (m) | 0.81 ± 0.16 | 0.44 ± 0.06 | 0.19 ± 0.09 | 0.95 ± 0.15 | |
MAE (m) | 0.62 ± 0.13 | 0.37 ± 0.07 | 0.15 ± 0.06 | 0.78 ± 0.14 | ||
R | 0.57 ± 0.21 | 0.11 ± 0.10 | 0.12 ± 0.08 | 0.40 ± 0.22 | ||
Stacked Neural Network ( = 0.8) | RMSE (m) | 0.78 ± 0.21 | 0.44 ± 0.06 | 0.19 ± 0.08 | 0.93 ± 0.21 | |
MAE (m) | 0.59 ± 0.13 | 0.36 ± 0.06 | 0.15 ± 0.05 | 0.78 ± 0.14 | ||
R | 0.50 ± 0.22 | 0.12 ± 0.13 | 0.19 ± 0.12 | 0.39 ± 0.26 | ||
Stacked Neural Network ( = 1) | RMSE (m) | 0.54 ± 0.18 | 0.42 ± 0.07 | 0.20 ± 0.08 | 0.73 ± 0.17 | |
MAE (m) | 0.44 ± 0.14 | 0.35 ± 0.07 | 0.15 ± 0.05 | 0.64 ± 0.14 | ||
R | 0.68 ± 0.24 | 0.51 ± 0.32 | 0.38 ± 0.33 | 0.26 ± 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, P.M.S.; Matos, A.C.; Santos, P.H.; Cardoso, J.S. Machine Learning Improvements to Human Motion Tracking with IMUs. Sensors 2020, 20, 6383. https://doi.org/10.3390/s20216383
Ribeiro PMS, Matos AC, Santos PH, Cardoso JS. Machine Learning Improvements to Human Motion Tracking with IMUs. Sensors. 2020; 20(21):6383. https://doi.org/10.3390/s20216383
Chicago/Turabian StyleRibeiro, Pedro Manuel Santos, Ana Clara Matos, Pedro Henrique Santos, and Jaime S. Cardoso. 2020. "Machine Learning Improvements to Human Motion Tracking with IMUs" Sensors 20, no. 21: 6383. https://doi.org/10.3390/s20216383
APA StyleRibeiro, P. M. S., Matos, A. C., Santos, P. H., & Cardoso, J. S. (2020). Machine Learning Improvements to Human Motion Tracking with IMUs. Sensors, 20(21), 6383. https://doi.org/10.3390/s20216383