Intelligent UAV Deployment for a Disaster-Resilient Wireless Network
<p>(<b>a</b>) User equipment (UE) distribution in <math display="inline"><semantics> <mi mathvariant="double-struck">A</mi> </semantics></math> and (<b>b</b>) UE distribution in <math display="inline"><semantics> <mi mathvariant="double-struck">B</mi> </semantics></math> (disaster region).</p> "> Figure 2
<p>System model illustration of the information and interference signals for <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>UAV</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>UE</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Illustration of ABS placement and UE association obtained using the approach in [<a href="#B14-sensors-20-06140" class="html-bibr">14</a>], where <math display="inline"><semantics> <msub> <mi>R</mi> <mi>B</mi> </msub> </semantics></math> = 2000 m, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>U</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>UAV</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msup> <mi>H</mi> <mo>*</mo> </msup> </semantics></math>= 300 m, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>70</mn> </mrow> </semantics></math>. The position of the ABS is represented using <b>X</b>. The three colors differentiate the UE clusters at a particular stage. (<b>a</b>–<b>h</b>) illustrate the <math display="inline"><semantics> <mrow> <mn>1</mn> <mi>st</mi> </mrow> </semantics></math>, <span class="html-italic">…</span>, <math display="inline"><semantics> <mrow> <mn>5</mn> <mi>th</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>7</mn> <mi>th</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>9</mn> <mi>th</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>11</mn> <mi>th</mi> </mrow> </semantics></math> adaptive stages, respectively</p> "> Figure 4
<p>Illustration of the movement of the aerial base stations (ABSs) in the 2D plane for suburban environment. The position of the ABS is represented using <b>x</b>. The three colors differentiate the UE clusters of the respective ABSs. (<b>a</b>) Initial 2D position of the ABSS. (<b>b</b>) Movement of the ABSs to the computed position. The solid arrow represents the actual ABS movement. The doted lines represent the adaptive process (does not represent the movement) performed at the CC. <math display="inline"><semantics> <msub> <mi>R</mi> <mi>B</mi> </msub> </semantics></math> = 2000 m, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>λ</mi> <mi>U</mi> </msub> </semantics></math> = 2 × 10<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </semantics></math>/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>UAV</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msup> <mi>H</mi> <mo>*</mo> </msup> </semantics></math> = 300 m, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>70</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>(<b>a</b>) Global best, local best, position, and the velocity in the (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>)th iteration. (<b>b</b>) Velocity in the <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>th</mi> </mrow> </semantics></math> iteration as a weighted vector addition of previous velocity components and the position in the <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>th</mi> </mrow> </semantics></math> iteration.</p> "> Figure 6
<p>Total spectral efficiency vs. altitude of the ABS (comparison between Algorithm 1-based deployment and random deployment).</p> "> Figure 7
<p>Total spectral efficiency vs. altitude of the ABS (comparing Algorithm 1-based deployment, random deployment, and equidistant deployment).</p> "> Figure 8
<p>Average coverage probability vs. Signal-to-Interference-Plus-Noise Ratio (SINR) threshold (comparison between Algorithm 1-based deployment and random deployment).</p> "> Figure 9
<p>Energy consumption of Algorithms 1 and 2 compared to naive exhaustive search.</p> "> Figure 10
<p>(<b>a</b>) Maximum achievable total spectral efficiency (TSE) vs. user intensity (<b>b</b>). Energy consumption for maneuvering vs. user intensity.</p> ">
Abstract
:1. Introduction
- A multi-UAV and multi-UE system, where UEs are randomly distributed in a disaster struck area is considered.
- Algorithms are proposed to position the UAV ABSs and allocate UEs for each ABS, to maximize the sum spectral efficiency of the network, while maintaining a minimum QoS level for all UEs.
- The proposed scheme is centralized and has a low level of complexity, as only the statistical CSI, locations of the UEs, and the initialized locations of the ABSs are required as inputs.
- The proposed scheme allows the ABSs to directly move from their initial position to the optimal position with a single maneuver, making it a quick and energy efficient approach.
- The available energy levels in the batteries of the ABSs are taken into consideration in the deployment.
2. System Model
2.1. Spatial Model
2.2. Channel Model
2.3. Signal-to-Interference-plus-Noise Ratio (SINR)
3. Optimal ABS Placement and User Association
3.1. 2D Deployment of the ABSs and the UE Assignment
3.2. ABS Altitude Selection
Algorithm 1: Clustering and matching algorithm with exhaustive search. |
Algorithm 2: Clustering and matching algorithm with PSO |
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 2334–2360. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Vanjani, P.; Paliwal, N.; Basnayaka, C.; Jayakody, D.; Wang, H.; Muthuchidambaranathan, P. Communication and networking technologies for UAVs: A survey. J. Netw. Comput. Appl. 2020, 102739. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.; Wong, K. UAV-Assisted Emergency Networks in Disasters. IEEE Wirel. Commun. 2019, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Peng, J.; Zhang, H. User-Centric Intelligent UAV Swarm Networks: Performance Analysis and Design Insight. IEEE Access 2019, 181469–181478. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun. Lett. 2016, 1647–1650. [Google Scholar] [CrossRef]
- Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage. IEEE Commun. Lett. 2017, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Savkin, V. A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and Minimum Interference in Cellular Networks. IEEE Trans. Ind. Inf. 2019, 2638–2647. [Google Scholar] [CrossRef]
- Farooq, M.; Zhu, K. A Multi-Layer Feedback System Approach to Resilient Connectivity of Remotely Deployed Mobile Internet of Things. IEEE Trans. Cogn. Commun. Netw. 2018, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Magarini, M.; Jayakody, D.; Sharma, V.; Li, L. On-Demand Ultra-Dense Cloud Drone Networks: Opportunities, Challenges and Benefits. IEEE Commun. Mag. 2018, 85–91. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Leung, Y.; Chu, X. Self-Adaptive Collective Motion of Swarm Robots. IEEE Trans. Autom. Sci. Eng. 2018, 1533–1545. [Google Scholar] [CrossRef]
- Delight, M.; Ramakrishnan, S.; Zambrano, T.; MacCready, T. Developing robotic swarms for ocean surface mapping. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 5309–5315. [Google Scholar]
- Moon, S.; Yang, K.; Gan, S.; Shim, D. Decentralized information-theoretic task assignment for searching and tracking of moving targets. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems, Denver, CO, USA, 9–12 June 2015; pp. 1031–1036. [Google Scholar]
- Zhao, H.; Wang, H.; Wu, W.; Wei, J. Deployment Algorithms for UAV Airborne Networks Toward On-Demand Coverage. IEEE J. Sel. Areas Commun. 2018, 2015–2031. [Google Scholar] [CrossRef]
- El Hammouti, H.; Benjillali, M.; Shihada, B.; Alouini, M. Learn-As-You-Fly: A Distributed Algorithm for Joint 3D Placement and User Association in Multi-UAVs Networks. IEEE Trans. Wirel. Commun. 2019, 5831–5844. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Duan, L.; Zhang, R. Adaptive Deployment for UAV-Aided Communication Networks. IEEE Trans. Wirel. Commun. 2019, 4531–4543. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, E.; Bor-Yaliniz, I.; Yongacoglu, A.; Yanikomeroglu, H. User association and bandwidth allocation for terrestrial and aerial base stations with backhaul considerations. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Jiang, F.; Swindlehurst, A. Optimization of UAV Heading for the Ground-to-Air Uplink. IEEE J. Sel. Areas Commun. 2012, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Duan, L. Fast Deployment of UAV Networks for Optimal Wireless Coverage. IEEE Trans. Mob. Comput. 2019, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Ghosh, A.; Kumar, A. Asynchronous Stochastic Approximation Based Learning Algorithms for As-You-Go Deployment of Wireless Relay Networks Along a Line. IEEE Trans. Mob. Comput. 2018, 1004–1018. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C. Caching in the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience. IEEE J. Sel. Areas Commun. 2017, 1046–1061. [Google Scholar] [CrossRef]
- Dutta, R.; Sun, L.; Pack, D. A Decentralized Formation and Network Connectivity Tracking Controller for Multiple Unmanned Systems. IEEE Trans. Control Syst. Technol. 2018, 2206–2213. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Jalalkamali, L. Coupled Distributed Estimation and Control for Mobile Sensor Networks. IEEE Trans. Autom. Control 2012, 2609–2614. [Google Scholar] [CrossRef]
- Mahjri, I.; Dhraief, A.; Belghith, A.; AlMogren, A. SLIDE: A Straight Line Conflict Detection and Alerting Algorithm for Multiple Unmanned Aerial Vehicles. IEEE Trans. Mob. Comput. 2018, 1190–1203. [Google Scholar] [CrossRef]
- Panic, S.; Perera, T.; Jayakody, D.; Stefanovic, C.; Prlincevic, B. UAV-assited Wireless Powered Sensor Network over Rician Shadowed Fading Channels. In Proceedings of the IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, Tel-Aviv, Israel, 4–6 November 2019; pp. 1–5. [Google Scholar]
- Jayakody, D.; Perera, D.; Ghrayeb, A.; Hasna, O. Self-Energized UAV-Assisted Scheme for Cooperative Wireless Relay Networks. IEEE Trans. Veh. Technol. 2020, 578–592. [Google Scholar] [CrossRef]
- Zhong, X. Deploying UAV Base Stations in Communication Network Using Machine Learning. Master’s Thesis, Department of Electrical and Computer Engineering, Simon Fraser University, Burnaby, BC, Canada, 2017. Available online: https://dspace.library.uvic.ca/handle/1828/11405 (accessed on 10 January 2020).
- Al-Reina, D.; Camp, D.; Munjal, A.; Toral, S. Evolutionary deployment and local search-based movements of 0th responders in disaster scenarios. Future Gener. Comput. Syst. 2018, 88, 61–78. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 2019; pp. 1942–1948. [Google Scholar]
- Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the Number and 3D Placement of Drone Base Stations in Wireless Cellular Networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference, Montreal, QC, Canada, 18–21 September 2017; pp. 1–6. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned Aerial Vehicle With Underlaid Device-to-Device Communications: Performance and Tradeoffs. IEEE Trans. Wirel. Commun. 2016, 3949–3963. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP Altitude for Maximum Coverage. IEEE Wirel. Commun. Lett. 2014, 569–572. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ding, Z.; Dai, X. A User-Centric Cooperative Scheme for UAV-Assisted Wireless Networks in Malfunction Areas. IEEE Trans. Commun. 2019, 8786–8800. [Google Scholar] [CrossRef] [Green Version]
Notation | Description |
---|---|
2D- Coordinates of the ABS | |
2D- Coordinates of the UE | |
Intensity of the UE distribution | |
Radius of the isolated region | |
Required Number of UAVs | |
Number of UEs in the isolated region | |
Maximum number of UE that can be supported by an ABS | |
2D euclidean distance from ABS to UE | |
Large-scale path loss exponent | |
Small-scale fading amplitude | |
Transmission power of the ABS | |
Received signal power at UE from the ABS | |
Aggregated interference experienced by the UE | |
Required energy for mobility of the ABS | |
Available energy for mobility at the ABS | |
, | Energy consumption per unit distance to horizontal and vertical movement respectively |
Assigned user list of the ABS | |
probability of line of sight from ABS to the UE | |
Constants which reflects environmental characteristics | |
Channel gain from the ABS to the UE | |
Minimum SINR threshold which reflects the minimum QoS requirement | |
Gain achieved comparing to the previous step | |
Altitude of the ABS | |
Common optimal altitude | |
Number of discrete altitude levels considered in Algorithm 1 | |
Optimal altitude of the ABS | |
, | Minimum gain expected in Algorithm 1 and Algorithm 2 |
, | Minimum and maximum altitude allowed to hover an ABS |
Position of the particle at iteration in PSO space | |
Global best position at the iteration in PSO space | |
Local best position of the particle at iteration in PSO space | |
Velocity of particle at iteration in PSO space | |
Objective function value of the particle at iteration in PSO space | |
Local learning coefficient and swarm learning coefficient respectively | |
Inertia weight of the swarm particle | |
Number of particles in the swarm population | |
Spectral efficiency gain achieved comparing to the previous iteration in PSO | |
Number of continuous iterations without a gain in the spectral efficiency | |
Threshold to exit the PSO algorithm |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
/m | 2000 m | r | 15 Mbps | ||
40 | 1 kJ | 0.1 J/m | |||
2 | 2.5 | 1 J/m | |||
30 dBm | , | 0 | 20 | ||
4 | −80 dBm | random in [0, 1] | |||
a | 4.8800 (Suburban) | b | 0.4290 (Suburban) | −30 dB | |
9.6117 (Urban) | 0.1581 (Urban) | 50 m | |||
12.0810 (Dense urban) | 0.1140 (Dense urban) | 3000 m | |||
24.5960 (High-rise urban) | 0.1248 (High-rise urban) | 0.5175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hydher, H.; Jayakody, D.N.K.; Hemachandra, K.T.; Samarasinghe, T. Intelligent UAV Deployment for a Disaster-Resilient Wireless Network. Sensors 2020, 20, 6140. https://doi.org/10.3390/s20216140
Hydher H, Jayakody DNK, Hemachandra KT, Samarasinghe T. Intelligent UAV Deployment for a Disaster-Resilient Wireless Network. Sensors. 2020; 20(21):6140. https://doi.org/10.3390/s20216140
Chicago/Turabian StyleHydher, Hassaan, Dushantha Nalin K. Jayakody, Kasun T. Hemachandra, and Tharaka Samarasinghe. 2020. "Intelligent UAV Deployment for a Disaster-Resilient Wireless Network" Sensors 20, no. 21: 6140. https://doi.org/10.3390/s20216140
APA StyleHydher, H., Jayakody, D. N. K., Hemachandra, K. T., & Samarasinghe, T. (2020). Intelligent UAV Deployment for a Disaster-Resilient Wireless Network. Sensors, 20(21), 6140. https://doi.org/10.3390/s20216140