Development and Application of Resistance Strain Force Sensors
<p>Structure of a metal-foil-type resistance strain gauge: (<b>a</b>) top view and (<b>b</b>) side view.</p> "> Figure 2
<p>Typical structures of sensitive grid wires in a resistance strain gauge. (<b>a</b>) Paper-based wire strain gauge, (<b>b</b>) polyimide-based grid strain gauge, and (<b>c</b>) semiconductor strain gauge.</p> "> Figure 3
<p>Geometrical structures of various sensitive grids used in resistance strain gauges for different applications. (<b>a</b>) Straight strain gauge, (<b>b</b>) T strain gauge, (<b>c</b>) V strain gauge, (<b>d</b>) double-bridge strain gauge, (<b>e</b>) triple-grid strain gauge, (<b>f</b>) chain strain gauge, (<b>g</b>) full-bridge strain gauge, and (<b>h</b>) circular-membrane strain gauge.</p> "> Figure 4
<p>Strain gauge manufacturing process. (<b>a</b>) photolithography process, (<b>b</b>) sputtering and stripping process, and (<b>c</b>) manufacturing process for shaping-type strain gauges.</p> "> Figure 5
<p>Strain transfer analysis diagram of a resistance strain-type transducer, in which layers of the resistance strain-sensitive grids and two layers of glue are considered. The substrate film and the sensitive grids are bond by the ground adhesive glue and upper adhesive glue in the y-axis direction. The strain propagates along the x-axis direction. The strain transfer characteristics can be analyzed by the elastic-mechanical shear lag theory [<a href="#B22-sensors-20-05826" class="html-bibr">22</a>].</p> "> Figure 6
<p>Strain distribution at different positions along the thickness direction. The strain value ratio is obtained from the strain inside the strain gauge and the elastomer.</p> "> Figure 7
<p>Dependence of the structural parameters of sensitive grids on the variable transfer ratio. (<b>a</b>) Sensitive grid length and (<b>b</b>) sensitive grid width [<a href="#B22-sensors-20-05826" class="html-bibr">22</a>]. <span class="html-italic">L</span><sub>g</sub> is the length of the sensitive gate.</p> "> Figure 8
<p>Influence of the adhesive layer parameters on the variable transfer coefficient: (<b>a</b>) width of the adhesive layer, (<b>b</b>) thickness of the adhesive layer, (<b>c</b>) shear modulus of the adhesive layer, and (<b>d</b>) bond ratio [<a href="#B22-sensors-20-05826" class="html-bibr">22</a>].</p> ">
Abstract
:1. Introduction
1.1. Resistance-Strain-Sensitive Grids
1.2. Materials for Resistance-Strain-Sensitive Grids
1.3. Fabrication Technologies for Resistance Strain Gauges
2. Stress Transfer Model of Strain Sensors
3. Creep Effects and Error Compensation of Strain Force Sensors
4. CNTs-Based Strain Sensors
5. Piezoresistive Effect in Wide Band Gap Semiconductors
6. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Google Scholar. 2018. Available online: http://en.wikipedia.org/wiki/Edward_E._Simmons (accessed on 11 July 2020).
- Hu, Y.; Zhang, F.; Shao, Y.; Zhou, Z.; Pi, Y. Influence of structural parameters of strain gauge sensitive grid on measurement accuracy. J. Chongqing Univ. 2013, 36, 21–27. [Google Scholar]
- Wu, Z.; Zhang, B.; Wang, D.; Du, S. Application of optical fiber sensor in civil building structure. J. Harbin Univ. Technol. 2001, 4, 469–474. [Google Scholar]
- Liu, J. Application of optical fiber sensing technology in bridge monitoring. Eng. Constr. Des. 2019, 11, 200–202. [Google Scholar]
- Yin, F. Research on resistance strain gauge and strain transfer principle. Scale 2010, 39, 1–8. [Google Scholar]
- Moradi, M.; Sivoththaman, S. Strain transfer analysis of surface-bonded MEMS strain sensors. IEEE Sens. J. 2013, 13, 637–643. [Google Scholar] [CrossRef]
- Zike, S.; Mikkelsen, L.P. Correction of gauge factor for strain gauges used in polymer composite testing. Exp. Mech. 2014, 54, 393–403. [Google Scholar] [CrossRef]
- Ruge, A.C. Development of precise speed control equipment for seismograph recording drums. In Massachusetts Institute of Technology; Department of Civil and Sanitary: Boston, MA, USA, 1940. [Google Scholar]
- HBM Strain Gauges. Available online: https://www.hbm.com/0014/strain-gauges/ (accessed on 11 July 2020).
- AVIC Instrumentation Co., Ltd. Available online: http://www.zemic.com.cn/ (accessed on 11 July 2020).
- Yin, F. Strain gauge sensitive gate material and its characteristics. Weigh. Instrum. 1998, 4, 48–52. [Google Scholar]
- Jiang, D.; Tian, M.; Wang, Y.; Xu, Y.; Yang, X.; Wu, D. Characteristics and Research Status of Nickel-Chromium Based Precision Resistance Alloy. Electr. Eng. Mater. 2017, 5, 23–28. [Google Scholar]
- Tong, L.; Guo, J. Noble Metal Alloys as Strain Gauge Materials. Platin. Metals Rev. 1994, 38, 98–108. [Google Scholar]
- Pan, X. Development of resistance strain gauge and mechanical quantity sensor in China. Sens. Technol. 1982, 3, 23–37. [Google Scholar]
- Fang, D. Study on the Microfabrication Technology and Characteristics of RF Mems Microinductors and Microcapacitors; Shanghai Jiao Tong University: Shanghai, China, 2008. [Google Scholar]
- Liu, H. Research on Thin Film Strain Gauge Integrated with Aeroengine Turbine Blade; University of Electronic Science and Technology of China: Chengdu, China, 2019. [Google Scholar]
- Yin, F. Semiconductor strain gauge and sensor. Sens. World 1996, 5, 31–41. [Google Scholar]
- Yin, F. Thick film strain gauge and sensor. Sens. World 1997, 1, 1–7. [Google Scholar]
- Gao, P. Preparation and performance of thick film resistance strain gauge. Sens. World 2013, 1, 33–38. [Google Scholar]
- Perry, C.C. The resistance strain gage revisited. Exp. Mech. 1984, 24, 286–299. [Google Scholar] [CrossRef]
- Little, E.G.; Tocher, D.; O’Donnell, P. Strain gauge reinforcement of plastics. Strain 1990, 26, 91–98. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Xiao, C.; Zhao, Y.; Zhu, Y.; Zhou, Z. Strain transfer characteristics of resistance strain-type transducer using elastic-mechanical shear lag theory. Sensors 2018, 18, 2420. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Wang, B.; Liu, T.; Xu, J. Strain transfer analysis of metal bonded resistance strain gauge. China Test 2016, 42, 1–6. [Google Scholar]
- Campbell, W.R.; Medbery, A. Performance Tests of Wire Strain Gages V: Error in Indicated Bending Strains in Thin Sheet Metal Due to Thickness and Rigidity of Gage; NASA Technical Reports Server (NTRS): Washington, DC, USA, 1947.
- Swan, J.W. Resistance strain gauges on thermoplastics. Strain 1973, 9, 56–59. [Google Scholar] [CrossRef]
- Li, H.; Zhou, G.; Ren, L. Strain transfer analysis of buried optical fiber sensor under non-axial force. Acta Opt. Sin. 2007, 5, 787–793. [Google Scholar]
- Wang, B.; Li, A.; Sun, Y. Strain transfer analysis of surface bonded MEMS strain sensor. J. Instrum. 2016, 37, 2606–2612. [Google Scholar]
- Luyckx, G.; Voet, E.; De Waele, W.; Degrieck, J. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametr. Study Smart Mater. Struct. 2010, 19, 105017. [Google Scholar] [CrossRef]
- Stehlin, P. Strain distribution in and around strain gauges. J. Strain Anal. 1972, 7, 228–235. [Google Scholar] [CrossRef]
- Beatty, M.F.; Chewning, S.W. Numerical analysis of the reinforcement effect of a strain gage applied to a soft material. Int. J. Eng. Sci. 1979, 17, 907–915. [Google Scholar] [CrossRef]
- Ajovalasit, A.; Fragapane, S.; Zuccarello, B. The Reinforcement Effect of Strain Gauges Embedded in Low Modulus Materials. Strain 2013, 49, 366–376. [Google Scholar] [CrossRef]
- Ajovalasit, A.; Zuccarello, B. Local Reinforcement Effect of a Strain Gauge Installation on Low Modulus Materials. J. Strain Anal. Eng. Des. 2006, 40, 643–653. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Nie, S. Experimental study on calibration of characteristic parameters of high temperature resistance strain gauge. China Test 2014, 40, 25–28. [Google Scholar]
- Chen, A.; Chen, H.; Chen, C. A software improvement technique for platinum resistance thermometers. Instruments 2020, 4, 15. [Google Scholar] [CrossRef]
- Li, J. Creep model and compensation of resistance strain load cell. J. Sens. Technol. 1995, 3, 59–63. [Google Scholar]
- Wang, Y.; Wu, S.; Chen, H. Neural Network compensation method for creep error of load cell. Acta Metrol. Sin. 2014, 4, 510–514. [Google Scholar]
- Wang, Y.; Wu, S.; Chen, H. Neural network compensation method for creep error of load cell. J. Metrol. 2018, 39, 510–514. [Google Scholar]
- Liang, K.; Zhang, X.; Shi, P.; Yin, J. Creep compensation for load cell based on RBF network. Chin. J. Electron. Devices 2013, 36, 924–927. [Google Scholar]
- Kuang, L.; Zhang, X.; Shi, P.; Yin, J. RBF network model for creep compensation of load cell. Electron. Compon. 2013, 36, 924–927. [Google Scholar]
- Tuttle, M.E.; Brinson, H.F. Prediction of the long-term creep compliance of general composite laminates. Exp. Mech. 1986, 26, 89–102. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Z.; Ou, J. Interface transferring mechanism and error modification of embedded FBG strain sensor based on creep: Part I. linear viscoelasticity. In Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2005; International Society for Optics and Photonics: Bellingham, WA, USA, 2005. [Google Scholar]
- Ge, J.; Wang, W.; Dong, H.; Liu, H.; Li, H.; Luo, W.; Wang, H.; Yuan, Z.; Zhang, H.; Zhu, J. Suppression of the negative effect of abnormal data based on the Hough transform and application to the magnetic compensation of airborne optically-pumped magnetometer data. Rev. Sci. Instrum. 2019, 90, 115103. [Google Scholar] [CrossRef]
- Zhao, X. Analysis and Control on the Dynamic Creep of a Stack Piezoelectric Actuator in Low Speed and Wide Range Applications; Shangdong University: Jinan, China, 2016; p. 11. [Google Scholar]
- Hartmut, J.; Klaus, K. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sens. Actuators A Phys. 2000, 79, 83–89. [Google Scholar]
- Yeh, T.-J.; Hung, R.-F.; Lu, S.-W. An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simul. Model. Pract. Theory 2008, 16, 93–110. [Google Scholar] [CrossRef]
- Zhang, H. Research on a Flexible and Highly Sensitive Piezoresistive Sensor Based on Silver Nanoparticles/Carbon Nanotubes; Huazhong University of Science and Technology: Wuhan, China, 2017. [Google Scholar]
- Zheng, F.; Wu, Y.; Zhang, J.; Yang, X. Piezoresistive flexible sensor based on single wall carbon nanotubes. J. Sens. Technol. 2019, 32, 1009–1015. [Google Scholar]
- Waris, O.; Tao, L. A review: Carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012. [Google Scholar] [CrossRef] [Green Version]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, Y.; Zhu, Y.; Rodriguez, J.; Morante, J.; Mendozac, E.; Poa, C.; Silva, S. Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes. Carbon 2006, 44, 1821–1825. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, M.D.; Hills, G.; Srimani, T. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501. [Google Scholar] [CrossRef]
- Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Ali, S.; Majid, C. Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites. J. Nanostruct. Chem. 2013, 3, 20. [Google Scholar]
- Kim, H.; Wang, M.; Lee, S.K. Tensile properties of millimeter-long multi-walled carbon nanotubes. Sci. Rep. 2017, 7, 9512–9519. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, S.; Kollosche, M.; Connor, J.; Kofod, G. Robust flexible capacitive surface sensor for structural health monitoring applications. J. Eng. Mech. 2013, 139, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.J.; Kim, J.; Lynch, J.P.; Kam, N.W.S.; Kotov, N.A. Multifunctional layer-by- layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 2007, 16, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef]
- Mabrook, M.; Pearson, C.; Jombert, A.; Zeze, D.; Petty, M. The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 2009, 47, 752–757. [Google Scholar] [CrossRef]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon nanotube strain sensor for human motion detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Park, J.G.; Wang, S.; Liang, R.; Zhang, C.; Wang, B. Working mechanisms of strain sensors utilizing aligned carbon nanotube network and aerosol jet printed electrodes. Carbon 2014, 73, 303–309. [Google Scholar] [CrossRef]
- Cohen, D.J.; Mitra, D.; Peterson, K.; Maharbiz, M.M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825. [Google Scholar] [CrossRef]
- Katherine, J.M.A.; Mirica, A.; Weis, J.G.; Schnorr, J.M.; Swager, T.M. Rapid pro-totyping of carbon-based chemiresistive gas sensors on paper. Proc. Nat. Acad. Sci. USA 2013, 110, E3265–E3270. [Google Scholar]
- Michelis, F.; Bodelot, L.; Bonnassieux, Y.; Lebental, B. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 2015, 95, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Hu, C.; Xiong, Y.; Han, X.; Xi, Y.; Miao, J. Temperature dependent piezoresistive effect of multi-walled. Diam. Relat. Mater. 2007, 16, 388–392. [Google Scholar] [CrossRef]
- Lee, B.Y.; Sung, M.G.; Lee, J.; Baik, K.Y.; Kwon, Y.-K.; Lee, M.-S.; Hong, S. Universal parameters for carbon nanotube network-based sensors: Can nanotube sensors be reproducible? ACS Nano 2011, 5, 4373–4379. [Google Scholar] [CrossRef]
- Bodelot, L.; Pavić, L.; Hallais, S.; Charliac, J.; Lebental, B. Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: In-situ characterization. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Correia, V.; Caparros, C.; Casellas, C.; Francesch, L.; Rocha, J.G.; Lanceros-Mendez, S. Development of inkjet printed strain sensors. Smart Mater. Struct. 2013, 22, 105028. [Google Scholar] [CrossRef]
- Wright, N.; Horsfall, A. SiC sensors. J. Phys. D Appl. Phys. 2007, 40, 6345–6354. [Google Scholar] [CrossRef]
- Shur, M.S.; Rumyantsev, S.L.; Levisnhtein, M.E. SiC Materials and Devices; World Scientific: Singapore, 2007; Volume 2. [Google Scholar]
- Chen, Q.; Sun, Y.; Wang, Y.; Cheng, H.; Wang, Q. ZnO nanowires–polyimide nanocomposite piezoresistive strain sensor. Sens. Actuators A Phys. 2013, 190, 161–167. [Google Scholar] [CrossRef]
- Hyun, J.S.; Park, J.H.; Moon, J.S.; Park, J.H.; Kim, S.H.; Choi, Y.J.; Lee, N.E.; Boo, J.H. Study on the applications of SiC thin films to MEMS techniques through a fabrication process of cantilevers. Prog. Solid State Chem. 2005, 33, 309–315. [Google Scholar] [CrossRef]
- Vendan, M.; Molian, P.; Bastawros, A.; Anderegg, J. Ultra-short pulsed laser deposition and patterning of SiC thin films for MEMS fabrication. Mater. Sci. Semicond. Process. 2005, 8, 630–645. [Google Scholar] [CrossRef]
- Tilak, V.; Vertiatchikh, A.; Jiang, J.; Reeves, N.; Dasgupta, S. Piezoresistive and piezoelectric effects in GaN. Phys. Status Solidi (C) 2006, 3, 2307–2311. [Google Scholar] [CrossRef]
- Phan, H.; Dao, D.; Wang, L.; Dinh, T.; Nguyen, N.; Qamar, A.L.; Tanner, P.; Dimitrijev, S.; Zhu, Y. The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Mater. Chem. 2015, 3, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.; Dinh, T.; Jafari, M.; Iacopi, A.; Dimitrijev, S.; Dao, D. A large pseudo-Hall effect in n-type 3C-SiC (1 0 0) and its dependence on crystallographic orientation for stress sensing applications. Mater. Lett. 2018, 213, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.; Dao, D.; Tanner, P.; Wang, L.; Nguyen, N.T.; Zhu, Y.; Dimitrijev, S. Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett. 2014, 104, 111905. [Google Scholar] [CrossRef]
- Talukdar, A.; Qazi, M.; Koley, G. High frequency dynamic bending response of piezoresistive GaN microcantilevers. Appl. Phys. Lett. 2012, 101, 252102. [Google Scholar]
- Nguyen, T.; Dinh, T.; Foisal, A.; Phan, H.; Nguyen, T.; Nguyen, N.; Dao, D. Giant piezoresistive effect by optoelectronic coupling in a heterojunction. Nat. Commun. 2019, 10, 4139. [Google Scholar] [CrossRef] [Green Version]
- Koumela, A.; Mercier, D.; Dupré, C.; Jourdan, G.; Marcoux, C.; Ollier, E.; Purcell, S.; Duraffourg, L. Piezoresistance of top-down suspended Si nanowires. Nanotechnology 2011, 22, 395701. [Google Scholar] [CrossRef]
- He, R.; Yang, P. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.C. Silicon nanowires feel the pinch. Nat. Nanotechnol. 2008, 3, 311. [Google Scholar] [CrossRef] [PubMed]
- Stefano, S.; Valentina, C.; Giancarlo, C.; Candido, F.P. Flexible tactile sensing based on piezoresistive composites: A review. Sensors 2014, 14, 5296–5332. [Google Scholar]
- Wang, Z.; Dong, C.; Wang, X.; Li, M.; Nan, T.; Liang, X.; Chen, H.; Wei, Y.; Zhou, H.; Zaeimbashi, M. Highly sensitive integrated flexible tactile sensors with piezoresistive CST thin films. Flex. Electron. 2018, 2–17. [Google Scholar] [CrossRef]
- Masako, T. An industrial and applied review of new MEMS devices features. Microelectron. Eng. 2007, 84, 1341–1344. [Google Scholar]
- Feng, Y. MEMS Capacitive strain sensor. J. Instrum. 2008, 3, 629–632. [Google Scholar]
- Bogue, R. Recent developments in MEMS sensors: A review of applications, markets and technologies. Sens. Rev. 2013, 4, 33. [Google Scholar] [CrossRef]
- Ahmed, A.; Mohammed, S.; Walied, A.M.; Edmond, L. High sensitivity MEMS strain sensor: Design and simulation. Sensors 2008, 8, 2642–2661. [Google Scholar]
- Lu, J. New development and application of strain electrical measurement and sensor technology. Electron. Technol. Softw. Eng. 2017, 4, 122. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, Y.; Li, Y.; Hao, Q. Development and Application of Resistance Strain Force Sensors. Sensors 2020, 20, 5826. https://doi.org/10.3390/s20205826
Zhao Y, Liu Y, Li Y, Hao Q. Development and Application of Resistance Strain Force Sensors. Sensors. 2020; 20(20):5826. https://doi.org/10.3390/s20205826
Chicago/Turabian StyleZhao, Yinming, Yang Liu, Yongqian Li, and Qun Hao. 2020. "Development and Application of Resistance Strain Force Sensors" Sensors 20, no. 20: 5826. https://doi.org/10.3390/s20205826
APA StyleZhao, Y., Liu, Y., Li, Y., & Hao, Q. (2020). Development and Application of Resistance Strain Force Sensors. Sensors, 20(20), 5826. https://doi.org/10.3390/s20205826