Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone
<p>Elements of the Hellenic Subduction Zone (HSZ) (<b>a</b>); arrows and nearby figures show directions and velocities of lithospheric plates motion, respectively; toothed lines remark tectonic trenches along the HSZ; PTT = Ptolemy trench, PT = Pliny trench; ST = Strabo trench, KFZ = Kefalonia Fault Zone. Red and green stars illustrate relocated epicenters of the 25 October 2018 M<sub>w</sub> = 6.8 earthquake (this paper) and the 26 January 2014 M<sub>w</sub> = 6.0 earthquake (see text). Main events of the 2018 earthquake sequence and of past seismicity (<b>b</b>); within the inset are epicenters of the 25 October 2018 mainshock (star), of the largest imminent 17 and 25 October 2018 foreshocks (circles) and of the largest 30 October 2018 aftershock (triangle). Open symbols are determinations from the National Observatory of Athens (NOA) catalogue, red symbols are epicenters relocated in this paper. Figures near epicenters show moment magnitudes. Epicenters and magnitudes of the 11 May 1976 and 18 November 1997 mainshocks are determined by ISC-GEM Global Instrumental Earthquake Catalogue (<a href="http://doi.org/10.31905/D808B825" target="_blank">http://doi.org/10.31905/D808B825</a>). Beach-ball is the Global Centroid Moment Tensor Project fault-plane solution (<a href="https://www.globalcmt.org/CMTsearch.html" target="_blank">https://www.globalcmt.org/CMTsearch.html</a>) and arrows show inferred plate motion.</p> "> Figure 2
<p>Schematic diagram for seismicity changes identification. A time segment T of the earthquake catalogue is divided in sub-intervals with supposedly different seismicity properties: e.g., T<sub>b</sub> is background seismicity, T<sub>f</sub> is a cluster, e.g., foreshock sequence, prior the mainshock origin time, T<sub>0</sub>. Suppose T<sub>f</sub> is characterized by significant seismicity changes with respect to T<sub>b</sub>. To identify seismicity changes, a long number of T<sub>b</sub>/T<sub>f</sub> pairs are examined by shifting time t<sub>i</sub> forwards or backwards. In practice, the time lengths of T<sub>b</sub> and T<sub>f</sub> are changed by removing one time unit (e.g., 1 day) or a certain number of events from T<sub>b</sub> and adding to T<sub>f</sub> inversely. The start and end times of the changes are determined from the maximum significance levels found among all possible pairs (<a href="#sec2dot2-sensors-20-05681" class="html-sec">Section 2.2</a>).</p> "> Figure 3
<p>Spatial distribution of earthquakes listed in the National Observatory of Athens (NOA) catalogue and occurring from 1 January 2014 to the 25 October 2018 mainshock occurrence (red circle) within radii of R = 60 km and R = 30 km from the mainshock epicenter. Color panel shows scaling of earthquake magnitude size.</p> "> Figure 4
<p>Time distribution of earthquakes listed in NOA catalogue and occurring from 1 January 2014 to the 25 October 2018 mainshock occurrence (red circle) within radii of R = 60 km (upper panel) and R = 30 km (lower panel) from the mainshock epicenter. In each panel all the catalogued events as well as the cumulative number, N, of only events of M<sub>c</sub> ≥2.0 are plotted. N versus time shows four seismicity stages: (1) 1 January 2014–1 August 2016 (background seismicity BGS 1), (2) 1 August 2016–1 May 2017 (cluster 1), (3) 1 May 2017–20 April 2018 (background seismicity BGS 2), (4) 20 April 2018–25 October 2018 (cluster 2). Colored dots shows earthquake size as in <a href="#sensors-20-05681-f003" class="html-fig">Figure 3</a>. Only earthquakes of M<sub>L</sub> < 4 occurred during the cluster 1 (swarm). Two imminent foreshocks (M<sub>w</sub> = 4.1, M<sub>w</sub> = 4.8, <a href="#sensors-20-05681-f001" class="html-fig">Figure 1</a>b) occurred during the foreshock sequence (cluster 2).</p> "> Figure 5
<p>P-wave records of the 25 October 2018 mainshock were downloaded from 30 teleseismic stations at epicentral distances 30° < Δ <90° beach ball as in <a href="#sensors-20-05681-f001" class="html-fig">Figure 1</a>b, and also shows the mainshock area.</p> "> Figure 6
<p>Fit between real P-waveforms and synthetics for the 30 stations illustrated in <a href="#sensors-20-05681-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>Seismicity within radii of 30 km and 60 km around the 25 October 2018 mainshock epicenter from 1 January 2014 up to 1 August 2016 (background seismicity state BGS 1) (<b>a</b>), and from 1 August 2016 up to 1 May 2017 (cluster 1) (<b>b</b>). Color panel illustrates earthquake scaling of magnitude size; star shows mainshock epicenter.</p> "> Figure 8
<p>Time distribution of earthquakes (for M<sub>c</sub> ≥ 2.0 number of events N = 611 out of 975 totally listed in NOA catalogue) occurring during the background seismicity state (BGS 1, 1 January 2014–1 August 2016, number of events N<sub>b</sub>) and the hypothetical foreshock activity (FOR-cluster 1, grey-shaded area, 1 August 2016–1 May 2017, number of events N<sub>f</sub>). Cluster 1 is composed of three sequential sub-clusters. Plot in blue is the cumulative number of events versus time. Seismicity testing showed that cluster 1 has not been a foreshock sequence but a transient swarm activity (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>). The plot in grey area is zoomed from 1 March 2016.</p> "> Figure 9
<p>Magnitude (M)-frequency (N) diagram of the seismicity state BGS 1 (number of events N<sub>b</sub>, seismicity rate r<sub>b</sub>, correlation coefficient R) and of the hypothetical foreshock sequence (FOR-cluster 1; N<sub>f</sub>, r<sub>f</sub>, as in <a href="#sensors-20-05681-f008" class="html-fig">Figure 8</a>) (<b>a</b>); b<sub>ML</sub> and b<sub>GR</sub> are b-value estimates from the maximum likelihood approximation and the weighted least-square method, respectively. The b-value in BGS 1 is significantly lower than that in FOR-cluster 1 period. This is systematically valid for M<sub>c</sub> varying from 1.1 to 2.7 with step 0.1 (<b>b</b>). For M<sub>c</sub> ≥ 2.0 (vertical red line) the changes in both b and r are highly significant (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>). Seismicity testing showed that the hypothetical FOR period (cluster 1) does not really represent foreshock activity but it has been a transient swarm activity (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>).</p> "> Figure 10
<p>Time variation of the average distance, <D>, between the 2018 mainshock epicenter and earthquake (M<sub>c</sub> ≥ 2.0) epicenters during the seismicity stage BGS 1 (1 January 2014–1 August 2016) and the hypothetical foreshock activity (cluster 1, 1 August 2016–1 May 2017) within radius R=60 km from the 2018 mainshock epicenter. In each step, <D> is calculated as the mean of w events. After 1 August 2016 (vertical red line) <D> dropped significantly (see <a href="#sec2dot3-sensors-20-05681" class="html-sec">Section 2.3</a>). Two peaks around November 2016 and March 2017 correspond to sub-clusters shown in <a href="#sensors-20-05681-f008" class="html-fig">Figure 8</a>.</p> "> Figure 11
<p>Time variation of the mean magnitude <M> (upper panel) and b (lower panel) for M<sub>c</sub> ≥ 2.0 during the seismicity stage BGS 1 and the hypothetical foreshock activity (cluster 1) within radius R=30 km from the 2018 mainshock epicenter.</p> "> Figure 12
<p>Seismicity at radii of 30 km and 60 km around the 25 October 2018 mainshock epicenter from 1 May 2017 up to 20 April 2018 (background seismicity BGS 2) (<b>a</b>), and from 20 April 2018 up to 25 October 2018 just prior to the mainshock occurrence (cluster 1) (<b>b</b>). Color panel shows scaling of earthquake magnitude size; star is mainshock epicenter.</p> "> Figure 13
<p>Time distribution of earthquakes (for Mc ≥ 2.0 number of events N=161 out of 234 totally listed in the NOA catalogue) occurring during the 1 May 2017–20 April 2018 background seismicity period BGS 2 (number of events N<sub>b</sub>) and the hypothetical foreshock activity (FOR-cluster 2, grey-shaded area, 20 April 2018–25 October 2018, number of events N<sub>f</sub>). Plot in blue is the cumulative number of events versus time. Vertical bar shows a date of 20 April 2018. Τhe same plot is zoomed from 1 February 2018 onwards. Seismicity testing showed that cluster 2 was a typical foreshock sequence (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>). Two imminent foreshocks (M<sub>w</sub> = 4.1, M<sub>w</sub> = 4.8; see magnitude scale in gray area, also <a href="#sensors-20-05681-f001" class="html-fig">Figure 1</a>b) were the largest ones during the entire foreshock sequence.</p> "> Figure 14
<p>As in <a href="#sensors-20-05681-f009" class="html-fig">Figure 9</a> for the periods of background seismicity BGS 2 and FOR-cluster 2 (<b>a</b>). The b-value in BGS 2 is significantly higher than that in FOR period. This is systematically valid for M<sub>c</sub> varying from 1.1 to 2.2 with step 0.1 (<b>b</b>). For M<sub>c</sub> = 2.0 (vertical red line) the differences in b are higlhy significant (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>). Seismicity testing showed that the FOR period (cluster 2) represents a typical foreshock sequence (see <a href="#sec3dot2dot1-sensors-20-05681" class="html-sec">Section 3.2.1</a>).</p> "> Figure 15
<p>Variation of <D> for the BGS 2 background seismicity state (1 May 2017–20 April 2018) and the hypothetical foreshock activity (20 April 2018–25 October 2018, cluster 2). In each step <D> is calculated as the mean of w events. After 20 April 2018 (vertical red line) <D> dropped significantly with respect to the previous period (see <a href="#sec2dot3-sensors-20-05681" class="html-sec">Section 2.3</a>).</p> "> Figure 16
<p>Variation of <M> (upper panel) and b<sub>ML</sub> (lower panel) for the seismicity plotted in <a href="#sensors-20-05681-f013" class="html-fig">Figure 13</a>. After the 1 May 2017–20 April 2018 background seismicity state (BGS 2), <M> increased while b<sub>ML</sub> decreased systematically during the foreshock activity (cluster 2-FOR, grey-shaded area, 20 April 2018–25 October 2018).</p> "> Figure 17
<p>Space (upper panel) and space-time (lower panel in snapshots of 3 s in duration) variation of the co-seismic slip during the 25 October 2018 mainshock (section from south to north); star is relocated epicenter. Red arrows show slip direction, length of arrows scales with amount of slip (black figures in m). Blue circles are relocated earthquakes in the premonitory intermediate-term (1 August 2016–1 May 2017) transient swarm. The swarm area delineates the asperity to the north. Within the first 6 s the rupture propagated northwards but stopped in the boundary with the swarm area.</p> "> Figure 18
<p>Source time function of the 25 October 2018 mainshock.</p> "> Figure 19
<p>As in <a href="#sensors-20-05681-f017" class="html-fig">Figure 17</a>, blue circles show relocated foreshocks (20 April 2018–25 October 2018) (<b>a</b>) and first 5-day aftershocks (<b>b</b>). Star outside the main slip (asperity) area and to the north of it is the epicenter of the largest aftershock (30 October 2018, M<sub>w</sub> = 5.4, <a href="#sensors-20-05681-f001" class="html-fig">Figure 1</a>b) of the entire aftershock period up to September 2020. Foreshocks delineated the asperity both to the north and up-dip. The foreshocks area overlaps partly with the upper side of the asperity. The foreshocks and aftershock areas are nearly identical.</p> "> Figure 20
<p>Coulomb Stress Change modeling for the mainshock of 25 October 2018 (star).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seismotectonic Setting
2.1.1. The Hellenic Subduction Zone (HSZ)
2.1.2. The 2018 Earthquake
2.2. Patterns of Clustered Seismicity
2.2.1. Definitions
2.2.2. Seismicity Patterns
2.2.3. Testing
2.3. Identification of Seismicity Anomalies
2.4. Seismicity Relocation
2.5. Finite-Fault Model
2.6. Data
3. Results
3.1. Seismicity Changes
3.2. Hypotheses Testing
3.2.1. Testing H1
3.2.2. Testing H2
3.3. Relocation
3.4. Rupture Process in Space and Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mogi, K. The fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (2nd paper). Bull. Earthq. Res. Inst. Univ. Tokyo 1963, 41, 595–614. [Google Scholar]
- Mogi, K. Some discussion on aftershocks, foreshocks and earthquake swarms—The fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (3rd paper). Bull. Earthq. Res. Inst. Univ. Tokyo 1963, 41, 615–658. [Google Scholar]
- Suyehiro, S.; Asada, T.; Ohtake, M. Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan. Meteor. Geophys. 1964, 15, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Papazachos, B.C. Foreshocks and earthquake prediction. Tectonophysics 1975, 28, 213–226. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Drakatos, G.; Plessa, A. Foreshock activity as a precursor of strong earthquakes in Corinthos Gulf, Central Greece. Phys. Chem. Earth 2000, 25, 239–245. [Google Scholar] [CrossRef]
- Jones, L.M.; Molnar, P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. 1979, 84, 3596–3608. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Chen, P.-Y.; Wu, Z.-L.; Bai, T.-X. Characteristics of foreshock and its identification. Acta Seismologica Sinica 2004, 18, 180–188. [Google Scholar] [CrossRef]
- Trugman, D.T.; Ross, Z.E. Pervasive foreshock activity across southern California. Geophys. Res. Lett. 2019, 46, 46. [Google Scholar] [CrossRef] [Green Version]
- Vidale, J.; Mori, J.; Houston, H. Something wicked this way comes: Clues from foreshocks and earthquake nucleation. EOS Trans. AGU 2001, 82, 68. [Google Scholar] [CrossRef] [Green Version]
- Helmstetter, A.; Sornette, S.; Grasso, J.-R. Main shocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. 2003, 108, 2046. [Google Scholar] [CrossRef] [Green Version]
- Vidale, J.E.; Shearer, P.M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 2006, 111, B05312. [Google Scholar] [CrossRef]
- Peng, Z.G.; Vidale, J.E.; Ishii, M.; Helmstetter, A. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Sianipar, D. Immediate Foreshocks Activity Preceding the 2018 Mw7.5 Palu Earthquake in Sulawesi, Indonesia. Pure Appl. Geophys. 2020, 177, 2421–2436. [Google Scholar] [CrossRef]
- Raleigh, B.; Benett, G.; Craig, H.; Hanks, T.; Molnar, P.; Nur, A.; Savage, J.; Scholz, C.; Turner, R.; Wu, F. Prediction of the Haicheng earthquake. EOS Trans. AGU 1977, 58, 236–272. [Google Scholar]
- Wyss, M. Second round of evaluations of proposed earthquake precursors. Pure Appl. Geophys. 1997, 149, 3–16. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Charalampakis, M.; Fokaefs, A.; Minadakis, G. Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw6.3) of 6 April 2009. Nat. Hazards Earth Syst. Sci. 2010, 10, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Engdahl, E.R.; Kisslinger, C. Seismological precursors to a magnitude earthquake in the Central Aleutian Islands. J. Phys. Earth 1977, 25, S243–S250. [Google Scholar] [CrossRef]
- Motoya, Y.; Abe, K. Waveform Similarity among Foreshocks and Aftershocks of the October 18, 1981, Eniwa, Hokkaido, Earthquake. In Practical Approaches to Earthquake Prediction and Warning, 1st ed.; Kisslinger, C., Rikitake, T., Eds.; Springer: Dordrecht, The Netherlands, 1985. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Minadakis, G.; Orfanogiannaki, K. Short-Term Foreshocks and Earthquake Prediction. In AGU Geophysical Monograph Series Book, 1st ed.; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 127–147. [Google Scholar] [CrossRef]
- Raykova, P.; Solakov, D.; Simeonova, S. A statistical study of the MW5.3 Valandovo (northern Macedonia) earthquake seismic sequence. Boll. Geofis. Teor. Appl. 2019, 60, 443–456. [Google Scholar]
- Ogata, Y.; Utsu, T.; Katsura, K. Statistical discrimination of foreshocks from other earthquake clusters. Geophys. J. Int. 1996, 127, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- Dascher-Cousineau, K.; Lay, T.; Brodsky, E.E. Two Foreshock Sequences Post Gulia and Wiemer (2019). Seismol. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Latoussakis, I.; Daskalaki, E.; Diakogianni, G.; Fokaefs, A.; Kolligri, M.; Liadopoulou, K.; Orfanogiannaki, K.; Pirentis, A. The East Aegean Sea strong earthquake sequence of October- November 2005: Lessons learned for earthquake prediction from foreshocks. Nat. Hazards Earth Syst. Sci. 2006, 6, 895–901. [Google Scholar] [CrossRef]
- Ishida, M.; Kanamori, H. The foreshock activity of the 1971 San Fernando earthquake, California. Bull. Seism. Soc. Am. 1978, 68, 1265–1279. [Google Scholar]
- Abercrombie, R.E.; Mori, J. Occurrence patterns of foreshocks to large earthquakes in the western United States. Nature 1996, 381, 303–307. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Ge, H. Pattern Characteristics of Foreshock Sequences. Pure Appl. Geophys. 1999, 155, 2–4, 395–408. [Google Scholar] [CrossRef]
- Imamura, A. Theoretical and Applied Seismology, 1st ed.; Maruzen & Co.: Tokyo, Japan, 1937; p. 358. [Google Scholar]
- Seggern, D. Seismicity pattern preceding moderate to major earthquakes. J. Geophys. Res. 1981, 86, 9325–9351. [Google Scholar] [CrossRef]
- Jones, L.M.; Molnar, P. Frequency of foreshocks. Nature 1976, 262, 677–679. [Google Scholar] [CrossRef]
- Zhuang, J.; Ogata, Y. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Phys. Rev. 2006, E73. [Google Scholar] [CrossRef] [Green Version]
- Van den Ende, M.P.A.; Ampuero, J.-P. On the statistical significance of foreshock sequences in Southern California. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Chepkunas, L.S.; Rogozhin, E.A.; Benikova, V.I. Spectral characteristics of foreshocks preceding major earthquakes of the Kurile-Kamchatka Arc and their application to the prediction of the main shock time. Russian J. Earth Sci. 2001, 3, 235–245. [Google Scholar] [CrossRef]
- Matsumura, S. Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan. Earth Planets Space 2006, 58, 1581–1586. [Google Scholar] [CrossRef] [Green Version]
- Dalguer, L.A.; Wu, H.; Matsumoto, Y.; Irikura, K.; Takahama, T.; Tonagi, M. Development of Dynamic Asperity Models to Predict Surface Fault Displacement Caused by Earthquakes. Pure Appl. Geophys. 2020, 177, 1983–2006. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Paradissis, D.; Ergintav, S.; Vernant, P. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 2010, 488, 22–30. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Kijko, A. Maximum likelihood estimation of earthquake hazard parameters in the Aegean area from mixed data. Tectonophysics 1991, 185, 277–294. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Comninakis, P.E. Geophysical and tectonic features of the Aegean Arc. J. Geophys. Res. 1971, 76, 8517–8533. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Kondopoulou, D.; Leventakis, G.A.; Pavlides, S. Seismotectonics of the Aegean region. Tectonophysics 1986, 124, 67–84. [Google Scholar] [CrossRef]
- Kiratzi, A.; Louvari, E. Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database. J. Geodyn. 2003, 36, 251–274. [Google Scholar] [CrossRef]
- Benetatos, C.; Kiratzi, A.; Papazachos, C.; Karakaisis, G. Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc. J. Geodyn. 2004, 37, 253–296. [Google Scholar] [CrossRef]
- Bohnhoff, M.; Harjes, H.P.; Meier, T. Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms. J. Seismol. 2005, 9, 341–366. [Google Scholar] [CrossRef] [Green Version]
- Shaw, B.; Jackson, J. Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys. J. Int. 2010, 181, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Shaw, B.; Ambraseys, N.N.; England, P.C.; Floyd, M.A.; Gorman, G.J.; Higham, T.F.G.; Jackson, J.A.; Nocquet, J.M.; Pain, C.C.; Piggott, M.D. Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geosci. 2008, 1, 268–276. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.; Westaway, R. Earthquake mechanisms in the Hellenic Trench near Crete. Geophys. J. Int. 1990, 102, 695–731. [Google Scholar] [CrossRef]
- Bocchini, G.M.; Novikova, T.; Papadopoulos, G.A.; Agalos, A.; Mouzakiotis, E.; Karastathis, V.; Voulgaris, N. Tsunami Potential of Moderate Earthquakes: The July 1, 2009 Earthquake (Mw6.45) and its Associated Local Tsunami in the Hellenic Arc. Pure Appl. Geophys. 2019, 177, 1315–1333. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Kassaras, I. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J. Geodyn. 2018, 123. [Google Scholar] [CrossRef]
- Chousianitis, Κ.; Konca, A.O. Intraslab Deformation and Rupture of the Entire Subducting Crust During the 25 October 2018 Mw6.8 Zakynthos Earthquake. Geophys. Res. Lett. 2019. [Google Scholar] [CrossRef]
- Ganas, A.; Briole, P.; Bozionelos, G.; Barberopoulou, A.; Elias, P.; Tsironi, V.; Valkaniotis, S.; Moshou, A.; Mintourakis, I. The 25 October 2018 Mw=6.7 Zakynthos earthquake (Ionian Sea, Greece): A low-angle fault model based on GNSS data, relocated seismicity, small tsunami and implications for the seismic hazard in the west Hellenic Arc. J. Geodynamics 2020, 137. [Google Scholar] [CrossRef]
- Sokos, E.; Gallovič, F.; Evangelidis, C.P.; Serpetsidaki, A.; Plicka, V.; Kostelecký, J.; Zahradník, J. The 2018 Mw6.8 Zakynthos, Greece, Earthquake: Dominant Strike-Slip Faulting near Subducting Slab. Seismol. Res. Lett. 2020, 91, 721–732. [Google Scholar] [CrossRef]
- Cirella, A.; Romano, F.; Avallone, A.; Piatanesi, A.; Briole, P.; Ganas, A.; Theodoulidis, N.; Chousianitis, K.; Volpe, M.; Bozionellos, G. The 2018 Mw6.8 Zakynthos (Ionian Sea, Greece) earthquake: Seismic source and local tsunami characterization. Geophys. J. Internat. 2020, 221, 1043–1054. [Google Scholar] [CrossRef]
- Ishimoto, M.; Iida, K. Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthq. Res. Inst. Univ. Tokyo 1939, 17, 443–478. [Google Scholar]
- Gutenberg, B.; Richter, C. Frequency of earthquakes in California. Bull. Seism. Soc. Am. 1944, 34, 185–188. [Google Scholar]
- Kagan, Y.; Knopoff, L. Statistical study of the occurrence of shallow earthquakes. Geophys. J. Roy. Astr. Soc. 1978, 55, 67–86. [Google Scholar] [CrossRef] [Green Version]
- Console, R.; Murru, M.; Alessandrini, B. Foreshock statistics and their possible relationship to earthquake prediction in the Italian region. Bull. Seism. Soc. Am. 1993, 83, 1248–1263. [Google Scholar]
- Maeda, K. Time distribution of immediate foreshocks obtained by a stacking method. Pure Appl. Geophys. 1999, 155, 381–394. [Google Scholar] [CrossRef]
- Yamaoka, K.; Ooida, T.; Ueda, Y. Detailed distribution of accelerating foreshocks before a M 5.1 earthquake in Japan. Pure Appl. Geophys. 1999, 155, 335–353. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Minadakis, G. Foreshock Patterns Preceding Great Earthquakes in the Subduction Zone of Chile. Pure Appl. Geophys. 2016. [Google Scholar] [CrossRef]
- Scholz, C.H. Microfractures, Aftershocks, and Seismicity. Bull. Seism. Soc. Am. 1968, 58, 1117–1130. [Google Scholar]
- McLaskey, G.C. Earthquake Initiation from Laboratory Observations and Implications for Foreshocks. J. Geophys. Res. 2019, 124. [Google Scholar] [CrossRef]
- Olami, Z.; Feder, H.; Christensen, K. Self-organized criticality in a continuous, non-conservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 1992, 68, 1244–1247. [Google Scholar] [CrossRef] [Green Version]
- Hainzl, S.; Zoller, G.; Kurths, J. Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes. J. Geophys. Res. 1999, 104, 7243–7253. [Google Scholar] [CrossRef]
- Avlonitis, Μ.; Papadopoulos, G.A. Foreshocks and b-value: Bridging macroscopic observations to source mechanical considerations. Pure Appl. Geophys. 2014. [Google Scholar] [CrossRef] [Green Version]
- Main, I. Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: Fact or artifact? Bull. Seism. Soc. Am. 2000, 90, 86–97. [Google Scholar] [CrossRef]
- Papadopoulos, G.A. Long-term accelerating foreshock activity may indicate the occurrence time of a strong shock in the Western Hellenic Arc. Tectonophysics 1988, 152, 179–192. [Google Scholar] [CrossRef]
- Mignan, A. Retrospective on the Accelerating Seismic Release (ASR) hypothesis: Controversy and new horizons. Tectonophysics 2011, 505, 1–16. [Google Scholar] [CrossRef]
- Vallianatos, F.; Chatzopoulos, G.A. Complexity View into the Physics of the Accelerating Seismic Release Hypothesis: Theoretical Principles. Entropy 2018, 20, 754. [Google Scholar] [CrossRef] [Green Version]
- Nanjo, K.Z.; Hirata, N.; Obara, K.; Kasahara, K. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Utsu, T. Statistical Features of Seismicity. In International Handbook of Earthquake & Engineering Seismology, Part A, 1st ed.; Lee, W.H.K., Kanamori, H., Jennings, P.C., Kisslinger, C., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 719–732. [Google Scholar]
- Mogi, K. Earthquake Prediction, 1st ed.; Academic Press: Tokyo, Japan, 1985; p. 355. [Google Scholar]
- Suyehiro, S.; Sekiya, H. Foreshocks and earthquake prediction. Tectonophysics 1972, 14, 219–225. [Google Scholar] [CrossRef]
- Main, I.; Meredith, P.G.; Jones, C. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophys. J. Internat. 1989, 96, 131–138. [Google Scholar] [CrossRef]
- Molchan, G.M.; Kronrod, T.L.; Nekrasova, A.K. Immediate foreshocks: Time variation of the b-value. Phys. Earth Planet. Int. 1999, 111, 229–240. [Google Scholar] [CrossRef]
- Yamashita, T.; Knopoff, L. A model of foreshock occurrence. Geophys. J. Intern. 2007, 96, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.-H.; Wu, Y.-M.; Tseng, T.-L.; Lin, T.-L.; Chen, C.-C. Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics 2012, 532-535, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Obara, K.; Igarashi, T.; Tsuruoka, H.; Nakagawa, S.; Hirata, N. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 2012, 335, 705–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Rivière, J.; Lv, Z.; Johnson, P.A.; Marone, C. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth Planet. Sci. Lett. 2018, 482, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Senatorski, P. Gutenberg–Richter’s b Value and Earthquake Asperity Models. Pure Appl. Geophys. 2020, 177, 1891–1905. [Google Scholar] [CrossRef]
- Lippiello, E.; Marzocchi, W.; De Arcangelis, L.; Godano, C. Spatial organization of foreshocks as a tool to forecast large earthquakes. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F.; Kanamori, H. Global survey of aftershock area expansion patterns. Phys. Earth Planet. Int. 1985, 40, 77–134. [Google Scholar] [CrossRef]
- Pegler, G.; Das, S. Analysis of the relationship between moment and fault length for large crustal strike-slip earthquakes between 1977-92. Geophys. Res. Lett. 1996, 23, 905–908. [Google Scholar] [CrossRef] [Green Version]
- Utsu, T. A statistical test of the difference in b-value between two earthquake groups. J. Phys. Earth 1966, 14, 37–40. [Google Scholar] [CrossRef]
- Utsu, T. Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pure Appl. Geophys. 1992, 155, 509–535. [Google Scholar] [CrossRef]
- Aki, K. Maximum likelihood estimates of b in the formula logN=a-bM and its confidence limits. Bull. Earth. Res. Inst. Univ. Tokyo 1965, 43, 237–239. [Google Scholar]
- Kosobokov, V.G.; Nekrasova, A.K. Temporal variations in the parameters of the Unified Scaling Law for Earthquakes in the eastern part of Honshu Island (Japan). Doklady Earth Sci. 2005, 405, 1352–1356. [Google Scholar]
- Nekrasova, A.; Kossobokov, V.; Peresan, A.; Aoudia, A.; Panza, G.F. A Multiscale Application of the Unified Scaling Law for Earthquakes in the Central Mediterranean Area and Alpine Region. Pure Appl. Geophys. 2011, 168, 297–327. [Google Scholar] [CrossRef]
- Papazachos, B.C. Dependence of the seismic parameter b on the magnitude range. Pure Appl. Geophys. 1974, 112, 1059–1065. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Karastathis, V.; Koukouvelas, I.; Sachpazi, M.; Baskoutas, I.; Chouliaras, G.; Agalos, A.; Daskalaki, E.; Minadakis, G.; Moschou, A.; et al. The Cephalonia, Ionian Sea (Greece), sequence of strong earthquakes of January-February 2014: A first report. Res. Geophys. 2014, 4, 5441. [Google Scholar] [CrossRef] [Green Version]
- Lomax, A.; Virieux, J.; Volant, P.; Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models. In Advances in Seismic Event Location, 1st ed.; Thurber, C.H., Rabinowitz, N., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 101–134. [Google Scholar] [CrossRef]
- Tarantola, A.; Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. 1982, 20, 219–232. [Google Scholar] [CrossRef]
- Sachpazi, M.; Hirn, A.; Clément, C.; Haslinger, F.; Laigle, M.; Kissling, E.; Charvis, P.; Hello, Y.; Lépine, J.C.; Sapin, M.; et al. Western Hellenic subduction and Cephalonia Transform: Local earthquakes and plate transport and strain. Tectonophysics 2000, 319, 301–319. [Google Scholar] [CrossRef]
- Papoulia, J.; Makris, J.; Tsambas, A. Microseismicity and crustal deformation of the Kyparissiakos Gulf, south-western Hellenic Arc, using an “amphibious” seismic array and a 3D velocity model obtained from active seismic observations. Boll. Geofis. Teor. Appl. 2014, 55, 281–302. [Google Scholar]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece. Phys. Chem. Earth. 2016. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Mouzakiotis, E.; Ganas, A.; Papadopoulos, G.A. High-precision relocation of seismic sequences above a dipping Moho: The case of the January-February 2014 seismic sequence on Cephalonia island (Greece). Solid Earth 2015, 6, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, S.H.; Heaton, T.H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am. 1983, 73, 1553–1583. [Google Scholar]
- Hartzell, S.H.; Liu, P.; Mendoza, C. The 1994 Northridge, California earthquake: Investigation of rupture velocity, rise time and high-frequency radiation. J. Geophys. Res. 1996, 101, 20091–20108. [Google Scholar] [CrossRef]
- Mendoza, C.; Hartzell, S.H. Finite-Fault Source Inversion Using Teleseismic P Waves: Simple Parameterization and Rapid Analysis. Bull. Seism. Soc. Am. 2013, 103, 834–844. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Agalos, A.; Charalampakis, M.; Kontoes, C.; Papoutsis, I.; Atzori, S.; Svigkas, N.; Triantafyllou, I. Fault models for the Bodrum–Kos tsunamigenic earthquake (Mw6.6) of 20 July 2017 in the east Aegean Sea. J. Geodynam. 2019, 131. [Google Scholar] [CrossRef]
- Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H. Two models for earthquake forerunners. Pure Appl. Geophys. 1975, 113, 169–181. [Google Scholar] [CrossRef]
- Nur, A. Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bull. Seismol. Soc. Amer. 1972, 62, 1217–1222. [Google Scholar]
- Mjachkin, V.I.; Sobolev, G.A.; Dolbilkina, N.A.; Morosov, V.N.; Preobrazensky, V.B. The study of variations in geophysical fields near focal zones of Kamchatka. Tectonophysics 1972, 14, 287–293. [Google Scholar] [CrossRef]
- Dietrich, J.H.; Kilgore, B. Implications of fault constitutive properties for earthquake prediction. Proc. Natl. Acad. Sci. USA 1996, 93, 3787–3794. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Knopoff, L. Simulation of earthquake sequences. Geophys. J. Int. 1987, 91, 693–709. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T. Simulation of seismicity due to fluid migration in a fault zone. Geophys. J. Int. 1998, 132, 674–686. [Google Scholar] [CrossRef] [Green Version]
- Hainzl, S.; Ogata, Y. Detecting fluid signals in seismicity data through statistical earthquake modeling. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Evison, F.; Rhoades, D. The precursory swarm hypothesis in Greece. Ann. Geof. 2000, 43, 991–1009. [Google Scholar]
- Dmowska, R.; Lovison, L.C. Intermediate-term seismic precursors for some coupled subduction zones. Pure Appl. Geophys. 1988, 126, 643–664. [Google Scholar] [CrossRef]
- Wesson, R.L.; Nicholson, C. Intermediate-term, pre-earthquake phenomena in California, 1975–1986, and preliminary forecast of seismicity for the next decade. Pure Appl. Geophys. 1988, 126, 407–445. [Google Scholar] [CrossRef]
- Evison, F.; Rhoades, D. Long-term seismogenic process for major earthquakes in subduction zones. Phys. Earth Plan. Int. 1998, 108, 185–199. [Google Scholar] [CrossRef]
- Dalguer, L.A.; Irikura, K.; Zhang, W.; Riera, J.D. Distribution of Dynamic and Static Stress Changes during 2000 Tottori (Japan) Earthquake: Brief Interpretation of the Earthquake Sequences; Foreshocks, Mainshock and Aftershocks. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Holtkamp, S.; Brudzinski, M.R. Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures. Earth Planet. Sci. Lett. 2014, 390, 234–243. [Google Scholar] [CrossRef]
- Bedford, J.; Moreno, M.; Schurr, B.; Bartsch, M.; Oncken, O. Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw8.1 by comparison of continuous GPS and seismic foreshock data. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, E.; Lay, T. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science 2014, 344, 700–702. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Nakagawa, S. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw8.1 earthquake. Geophys. Res. Let. 2014, 41, 5420–5427. [Google Scholar] [CrossRef]
- Lay, T.; Yue, H.; Brodsky, E.E.; An, C. The 1 April 2014 Iquique, Chile, Mw8.1 earthquake rupture sequence. Geophys. Res. Lett. 2014, 41. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, S.; Metois, M.; Fuenzalida, A.; Ruiz, J.; Leyton, F.; Grandin, R.; Vigny, C.; Madariaga, R.; Campos, J. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science 2014. [Google Scholar] [CrossRef] [PubMed]
- Schurr, B.; Asch, G.; Hainzl, S.; Bedford, J.; Hoechner, A.; Palo, M.; Wang, R.; Moreno, M.; Bartsch, M.; Zhang, Y. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 2014, 512, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Yagi, Y.; Okuwaki, R.; Enescu, B.; Hirano, S.; Yamagami, Y.; Endo, S.; Komoro, T. Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity. Geophys. Res. Lett. 2014, 41. [Google Scholar] [CrossRef] [Green Version]
- Duputel, Z.; Jiang, J.; Jolivet, R.; Simons, M.; Rivera, L.; Ampuero, J.-P.; Riel, B.; Owen, S.E.; Moore, A.W.; Samsonov, S.V. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophys. Res. Lett. 2015. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Mancini, S.; Segou, M.; Werner, M.; Cattania, C. Improving physics-based aftershock forecasts during the 2016-2017 Central Italy Earthquake Cascade. J. Geophys. Res. 2019, 124, 8626–8643. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.W.; Reasenberg, P.A. Earthquake-induced Static-stress Changes on Central California Faults; U.S. Geological Survey professional paper 1550-F; The Loma Prieta, California, Earthquake of October 17, 1989—Tectonic Processes and Models; Simpson, R.W., Ed.; United States Geological Survey: Reston, VA, USA, 1994; p. 134. [Google Scholar]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- ISC-GEM. Global Instrumental Earthquake Catalogue, v.7.0, released on 2020-04-09. Available online: http://doi.org/10.31905/D808B825 (accessed on 25 August 2020).
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. EOS Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Seismicity Period | Start Date h:m:s | End Date h:m:s | n | P | 1-Pz (for r) | 1-Pz (for D) |
---|---|---|---|---|---|---|
BGS 1 | 01 Jan 2014 00:00:00 | 01 Aug 2016 00:00:00 | 160 | 100 | 100 | |
Cluster 1 | 01 Aug 2016 00:00:01 | 01 May 2017 00:00:00 | 451 | 6.18 × 10-7 | ||
BGS 2 | 01 May 2017 00:00:01 | 20 Apr 2018 00:00:00 | 61 | 98.26 | 99.97 | |
Cluster 2 | 20 Apr 2018 00:00:01 | 25 Oct 2018 22:54:48 | 100 | 0.0467 | ||
Relocated BGS 2 | 01 May 2017 00:00:01 | 20 Apr 2018 00:00:00 | 58 | 98.93 | 100 | |
Relocated Cluster 2 | 20 Apr 2018 00:00:01 | 25 Oct 2018 22:54:48 | 94 | 0.032 |
Strike | Dip | Rake | L (km) | H (km) | v (km/s) | h (km) | Mo | Mw |
---|---|---|---|---|---|---|---|---|
10° | 24° | 164° | 70 | 24 | 3.2 | 13 | 2.0 × 1026 | 6.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, G.A.; Agalos, A.; Minadakis, G.; Triantafyllou, I.; Krassakis, P. Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors 2020, 20, 5681. https://doi.org/10.3390/s20195681
Papadopoulos GA, Agalos A, Minadakis G, Triantafyllou I, Krassakis P. Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors. 2020; 20(19):5681. https://doi.org/10.3390/s20195681
Chicago/Turabian StylePapadopoulos, Gerassimos A., Apostolos Agalos, George Minadakis, Ioanna Triantafyllou, and Pavlos Krassakis. 2020. "Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone" Sensors 20, no. 19: 5681. https://doi.org/10.3390/s20195681
APA StylePapadopoulos, G. A., Agalos, A., Minadakis, G., Triantafyllou, I., & Krassakis, P. (2020). Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors, 20(19), 5681. https://doi.org/10.3390/s20195681