A Robotic Cognitive Architecture for Slope and Dam Inspections
<p>Main components of the ARCog.</p> "> Figure 2
<p>UAV Matrice used as part of the framework.</p> "> Figure 3
<p>Block diagram showing the physical and logical implementation of the main components.</p> "> Figure 4
<p>Positions of the cameras during the inspection and the UAV trajectory.</p> "> Figure 5
<p>Reconstructed area.</p> "> Figure 6
<p>Path changing after recognizing points of interest in the inspection.</p> "> Figure 7
<p>Recognized points of interest in the image.</p> "> Figure 8
<p>Results of vegetation suppression with (<b>a</b>) full vegetation and (<b>b</b>) using DL suppression.</p> "> Figure 9
<p>Characteristics of autonomous and manual inspections.</p> "> Figure 10
<p>An aircraft suffering a wind disturbance during the inspection.</p> "> Figure 11
<p>Modified UAV path based on safety: (<b>a</b>) UAV’s motors increasing their power to maintain the position. (<b>b</b>) Path changing during the wind disturbance.</p> ">
Abstract
:1. Introduction
1.1. Contribution
- An optimized approach to processing accurate visual-based decisions and3-dimensional surface reconstruction for slopes and dams.
- An organized and scalable paradigm to support decision-making and high-level cognition.
- An approach to enable the operator to be a human in-the-loop, with the sole obligation of analyzing the current inspection.
- A computational implementation of a decentralized architecture enabling autonomous UAV operation.
- A mechanism to provide qualified information in order to enable a human-in-the-loop operator to make confident decisions about the mission requirements.
- A real application of a cognitive-based architecture.
- Improvements in slope and dam inspections.
1.2. Organization
2. Background and Related Work
2.1. Slope and Dam Inspections with UAVs
2.2. Aerial Robotic Systems’ Frameworks
3. The Aerial Robotics Cognitive Architecture
3.1. General View
3.2. Physical and Logical Implementation
3.2.1. Low-Level Reactive Block
3.2.2. Cognitive Tactical Level
3.2.3. Strategic Collective Cognition Level
3.2.4. Cognitive Mechanisms Underlying Decision-Making and Deep Learning
3.2.5. Human-In-The-Loop
4. Results and Discussions
- Testing the architecture’s ability to make autonomous actions towards the mission goals;
- Following the security requirements imposed on the system during the tasks execution and re-planning the mission when is necessary;
- Inspecting interesting points and structures through visual and 3D reconstruction analysis;
- Analyzing gains in terms of quality and execution time;
- Measuring human interference during routine inspections.
Inspection in a Rocky Slope
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeon, J.; Lee, J.; Shin, D.; Park, H. Development of dam safety management system. Adv. Eng. Softw. 2009, 40, 554–563. [Google Scholar] [CrossRef]
- Min, H.J. Generating Homogeneous Map with Targets and Paths for Coordinated Search. Int. J. Control. Autom. Syst. 2018, 16, 834–843. [Google Scholar] [CrossRef]
- Ropero, F.; Muñoz, P.; R-Moreno, M.D. TERRA: A path planning algorithm for cooperative UGV–UAV exploration. Eng. Appl. Artif. Intell. 2019, 78, 260–272. [Google Scholar] [CrossRef]
- Seleckỳ, M.; Rollo, M.; Losiewicz, P.; Reade, J.; Maida, N. Framework for incremental development of complex unmanned aircraft systems. In Proceedings of the Integrated Communication, Navigation, and Surveillance Conference (ICNS), Herdon, VA, USA, 21–23 April 2015. [Google Scholar]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horizons 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Kelley, T.D. Symbolic and sub-symbolic representations in computational models of human cognition: What can be learned from biology? Theory Psychol. 2003, 13, 847–860. [Google Scholar] [CrossRef]
- Tolmidis, A.T.; Petrou, L. Multi-objective optimization for dynamic task allocation in a multi-robot system. Eng. Appl. Artif. Intell. 2013, 26, 1458–1468. [Google Scholar] [CrossRef]
- Tao, L. Development of dam safety management system. Dam Saf. 2011, 40, 554–563. [Google Scholar]
- Jonkman, S.N.; Vrijling, J.K.; Vrouwenvelder, A.C.W.M. Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Nat. Hazards 2008, 46, 353–389. [Google Scholar] [CrossRef] [Green Version]
- Bowles, D.S. Estimating Life Loss for Dam Safety Risk Assessment—A Review and New Approach. In Proceedings of the USENIX Security Symposium, Boston, MA, USA, 12–14 August 2004. [Google Scholar]
- González-Aguilera, D.; Gómez-Lahoz, J.; Sánchez, J. A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner. Sensors 2008, 8, 5866–5883. [Google Scholar] [CrossRef] [Green Version]
- Armah, S.K.; Yi, S.; Choi, W. Design of feedback control for quadrotors considering signal transmission delays. Int. J. Control. Autom. Syst. 2016, 14, 1395–1403. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.J. Trajectory tracking control of multirotors from modelling to experiments: A survey. Int. J. Control. Autom. Syst. 2017, 15, 281–292. [Google Scholar] [CrossRef]
- Khaloo, A.; Lattanzi, D.; Jachimowicz, A.; Devaney, C. Utilizing UAV and 3D Computer Vision for Visual Inspection of a Large Gravity Dam. Front. Built Environ. 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli Dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards Risk 2017, 8, 1562–1579. [Google Scholar] [CrossRef] [Green Version]
- Özaslan, T.; Shen, S.; Mulgaonkar, Y.; Michael, N.; Kumar, V. Inspection of Penstocks and Featureless Tunnel-like Environments Using Micro UAVs. In Field and Service Robotics: Results of the 9th International Conference; Springer: Berlin/Heidelberg, Germany, 2015; Volume 105, pp. 123–136. [Google Scholar]
- Park, H.S.; Tran, N.H. A cognitive agent based manufacturing system adapting to disturbances. Int. J. Control. Autom. Syst. 2012, 10, 806–816. [Google Scholar] [CrossRef]
- Sun, X.; Cai, C.; Yang, J.; Shen, X. Route evaluation for unmanned aerial vehicle based on type-2 fuzzy sets. Eng. Appl. Artif. Intell. 2015, 39, 132–145. [Google Scholar] [CrossRef]
- Sampedro, C.; Bavle, H.; Sanchez Lopez, J.L.; Suarez Fernandez, R.; Rodriguez Ramos, A.; Molina, M.; Campoy Cervera, P. A flexible and dynamic mission planning architecture for uav swarm coordination. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016. [Google Scholar]
- Erdos, D.; Erdos, A.; Watkins, S.E. An experimental UAV system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 32–37. [Google Scholar] [CrossRef]
- Rabah, M.; Rohan, A.; Talha, M.; Nam, K.H.; Kim, S.H. Autonomous Vision-based Target Detection and Safe Landing for UAV 2. Int. J. Control. Autom. Syst. 2018, 16, 3013–3025. [Google Scholar] [CrossRef]
- Ramirez, A.; Espinoza, E.S.; Carrillo, L.G.; Mondié, S.; García, A.; Lozano, R. Stability analysis of a vision-based UAV controller. J. Intell. Robot. Syst. 2014, 74, 69–84. [Google Scholar] [CrossRef]
- Gu, J.; Su, T.; Wang, Q.; Du, X.; Guizani, M. Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 2018, 56, 82–89. [Google Scholar] [CrossRef]
- Fregene, K.; Kennedy, D.; Madhavan, R.; Parker, L.; Wang, D. A class of intelligent agents for coordinated control of outdoor terrain mapping UGVs. Eng. Appl. Artif. Intell. 2005, 18, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Schlotfeldt, B.; Thakur, D.; Atanasov, N.; Kumar, V.; Pappas, G.J. Anytime Planning for Decentralized Multirobot Active Information Gathering. IEEE Robot. Autom. Lett. 2018, 3, 1025–1032. [Google Scholar] [CrossRef]
- Emel’yanov, S.; Makarov, D.; Panov, A.I.; Yakovlev, K. Multilayer cognitive architecture for UAV control. Cogn. Syst. Res. 2016, 39, 58–72. [Google Scholar] [CrossRef]
- Ball, J.T. Advantages of ACT-R over prolog for natural language analysis. In Proceedings of the 22nd Annual Conference on Behavior Representation in Modeling and Simulation, Ottawa, ON, Canada, 11–14 July 2013. [Google Scholar]
- Insaurralde, C.C. Service-oriented agent architecture for unmanned air vehicles. In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 5–9 October 2014; IEEE: Piscataway, NJ, USA, 2014; p. 8B1-1. [Google Scholar]
- Kothakota, S.K.; Angulo Bahón, C. Integracion de la Arquitectura Cognitiva SOAR en un Entorno ROS sobre un Parrot AR. Drone 2.0. In Proceedings of the JARCA 2015 Actas de las XVII Jornadas de ARCA Sistemas Cualitativos y sus Aplicaciones en Diagnosis, Robótica, Inteligencia Ambiental y Ciudades Inteligentes, Vinaròs, Spain, 23–27 June 2015; pp. 64–69. [Google Scholar]
- Xiang, T.; Jiang, F.; Lan, G.; Sun, J.; Liu, G.; Hao, Q.; Wang, C. Uav based target tracking and recognition. In Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 19–21 September 2017; pp. 400–405. [Google Scholar]
- Agnisarman, S.; Lopes, S.; Madathil, K.C.; Piratla, K.; Gramopadhye, A. A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 2019, 97, 52–76. [Google Scholar] [CrossRef]
- Tezza, D.; Andujar, M. The state-of-the-art of human–drone interaction: A survey. IEEE Access 2019, 7, 167438–167454. [Google Scholar] [CrossRef]
- Walsh, C. Human-in-the-loop development of soft wearable robots. Nat. Rev. Mater. 2018, 3, 78–80. [Google Scholar] [CrossRef]
- Orsag, M.; Haus, T.; Tolić, D.; Ivanovic, A.; Car, M.; Palunko, I.; Bogdan, S. Human-in-the-loop control of multi-agent aerial systems. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 2139–2145. [Google Scholar]
- Xu, Z.; Nian, X.; Wang, H.; Chen, Y. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties. ISA Trans. 2017, 69, 157–165. [Google Scholar] [CrossRef]
- Di Franco, C.; Buttazzo, G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell. Robot. Syst. 2016, 83, 445–462. [Google Scholar] [CrossRef]
- Pinto, M.F.; Marcato, A.L.M.; Melo, A.G.; Honório, L.M.; Urdiales, C. A Framework for Analyzing Fog-Cloud Computing Cooperation Applied to Information Processing of UAVs. Wirel. Commun. Mob. Comput. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, J.; Gandolfo, D.C.; Salinas, L.R.; Rosales, C.; Carelli, R. Multi-objective control for cooperative payload transport with rotorcraft UAVs. ISA Trans. 2018, 80, 491–502. [Google Scholar] [CrossRef]
- Pizetta, I.H.B.; Brandão, A.S.; Sarcinelli-Filho, M. Avoiding obstacles in cooperative load transportation. ISA Trans. 2019, 91, 253–261. [Google Scholar] [CrossRef]
- Xiong, J.J.; Zheng, E.H. Position and attitude tracking control for a quadrotor UAV. ISA Trans. 2014, 53, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Wang, C.; Cong, Y.; Shen, L. Systemic design of distributed multi-UAV cooperative decision-making for multi-target tracking. Auton. Agents Multi-Agent Syst. 2019, 33, 132–158. [Google Scholar] [CrossRef]
- Paredes, R.; Tzou, P.L.; Van Zyl, G.; Barrow, G.; Camacho, R.; Carmona, S.; Grant, P.M.; Gupta, R.K.; Hamers, R.L.; Harrigan, P.R.; et al. Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation. PLoS ONE 2017, 12, e0181357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.G.; Hyung, H.J.; Lee, D.W. Egocentric teleoperation approach. Int. J. Control. Autom. Syst. 2017, 15, 2744–2753. [Google Scholar] [CrossRef]
- Liu, P.; Choo, K.K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing image classification. Soft Comput. 2017, 21, 7053–7065. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Téllez, R.A.; Angulo, C. Embodying cognitive abilities: categorization. In International Work-Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2007; pp. 790–797. [Google Scholar]
- Téllez, R.A.; Angulo, C. Acquisition of meaning through distributed robot control. In Proceedings of the ICRA workshop Semantic Information in Robotics, Rome, Italy, 10 April 2007; pp. 41–48. [Google Scholar]
- Cui, Y.; Ahmad, S.; Hawkins, J. Continuous online sequence learning with an unsupervised neural network model. Neural Comput. 2016, 28, 2474–2504. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.F.; Melo, A.G.; Marcato, A.L.; Urdiales, C. Case-based reasoning approach applied to surveillance system using an autonomous unmanned aerial vehicle. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1324–1329. [Google Scholar]
- Guerrero, J.A.; Bestaoui, Y. UAV path planning for structure inspection in windy environments. J. Intell. Robot. Syst. 2013, 69, 297–311. [Google Scholar] [CrossRef]
Architectures | Features | |
---|---|---|
Practical Experiments | Human-in-The-Loop | |
ARCog | Yes, Outdoor inspection 3D Inspection | Yes |
FFIDUAS (2015) [10] | Yes, Outdoor path planning | No |
IVCA (2014) [12] | No | No |
STRL (2016) [17] | Yes, Outdoor path planning | No |
Proactive (2015) [30] | No | No |
Aerostack (2017) [11] | Yes, Outdoor and indoor Search and Rescue | No |
RULE | IF | REQUEST |
---|---|---|
1 | unknown | human-assistance |
2 | crackle | decrease-distance |
3 | moisture | decrease-distance |
4 | 3Ddeformity | increase-distance |
5 | bad-reconstruction | decrease-distance |
6 | vegetation | continue |
7 | nothing | continue |
RULE | IF | REQUEST |
---|---|---|
1 | low battery | land |
2 | maximum performance | land |
3 | switches | increase-distance |
Parameter | Autonomous with ARCog | Autonomous with GPS |
---|---|---|
Average Resolution | 21.3 points/cm2 | 9 points/cm2 |
Mean Error X() | 0.07 m | 0.51 m |
Mean GPS Distance() | 0.229 m | 0.821 m |
Mission Time | 11 min | 8 mins |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, M.F.; Honorio, L.M.; Melo, A.; Marcato, A.L.M. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors 2020, 20, 4579. https://doi.org/10.3390/s20164579
Pinto MF, Honorio LM, Melo A, Marcato ALM. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors. 2020; 20(16):4579. https://doi.org/10.3390/s20164579
Chicago/Turabian StylePinto, Milena F., Leonardo M. Honorio, Aurélio Melo, and Andre L. M. Marcato. 2020. "A Robotic Cognitive Architecture for Slope and Dam Inspections" Sensors 20, no. 16: 4579. https://doi.org/10.3390/s20164579
APA StylePinto, M. F., Honorio, L. M., Melo, A., & Marcato, A. L. M. (2020). A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors, 20(16), 4579. https://doi.org/10.3390/s20164579