Modern Electrode Technologies for Ion and Molecule Sensing
<p>General electrochemical cell set-up. Typically, a potentiostat is used as the ammeter, voltmeter, and function generator.</p> "> Figure 2
<p>General design of a carrier-doped liquid-membrane electrode.</p> "> Figure 3
<p>General enzyme features relevant to sensing technology.</p> "> Figure 4
<p>(<b>A</b>) Potential vs. time signal for linear sweep; (<b>B</b>) Potential vs. time signal for cyclic voltammetry; (<b>C</b>) Potential vs. time signal for square wave voltammetry; (<b>D</b>) Potential vs. time signal for stripping voltammetry. Anodic stripping is shown in this case.</p> ">
Abstract
:1. Introduction
2. Electrode Designs and Considerations
2.1. Carrier-Doped Membrane Electrodes
2.2. Carbon-Based Electrodes
2.2.1. Diamond Electrodes
2.2.2. Glassy-Carbon Electrodes
2.2.3. Carbon Paste Electrodes
2.2.4. Carbon Nanotubes Electrodes
2.3. Enzyme-Based Electrodes
3. Electrochemical Techniques
3.1. Sweep Voltammetry
3.2. Square Wave Voltammetry
3.3. Differential Pulse Voltammetry
3.4. Stripping Voltammetry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Florea, A.M.; Busselberg, D. Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals 2006, 19, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.A.; Alonso, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems—A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Want, L.; Zhu, J.; Jiang, W. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker. ACS Appl. Mater. Interfaces 2016, 8, 2573–2581. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens. Bioelectron. 2016, 77, 99–106. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, Fourth Edition. Available online: https://www.who.int/water_sanitation_health/publications/2011/9789241548151_ch12.pdf (accessed on 8 August 2020).
- Osteryoung, J.G.; Osteryoung, R.A. Square Wave Voltammetry. Anal. Chem. 1985, 57, 101A–110A. [Google Scholar] [CrossRef]
- Ramaley, L.; Krause, M.S. Theory of Square Wave Voltammetry. Anal. Chem. 1969, 41, 1362–1365. [Google Scholar] [CrossRef]
- O’Dea, J.J.; Osteryoung, J.; Osteryoung, R.A. Theory of Square Wave Voltammetry for Kinetic Systems. Anal. Chem. 1981, 53, 695–701. [Google Scholar] [CrossRef]
- Laviron, E. The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. 1979, 100, 263–270. [Google Scholar] [CrossRef]
- Nadjo, L.; Saveant, J.M. Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions. Electroanal. Chem. Interfacial Electrochem. 1973, 48, 113–145. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Hoilett, O.S.; Walker, J.F.; Balash, B.M.; Jaras, N.J.; Boppana, S.; Linnes, J.C. KickStat: A Coin-Sized Potentiostat for High-Resolution Electrochemical Analysis. Sensors 2020, 20, 2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 2nd ed.; John Wiley & Sons, Inc.: New York City, NY, USA, 2000. [Google Scholar]
- Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-Based Ion-Selective electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef] [PubMed]
- Buhlmann, P.; Pretsch, E.; Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593–1687. [Google Scholar] [CrossRef] [PubMed]
- Bahar, D.U.; Topcu, C.; Ozcimen, D.; Isildak, I. A Novel Borate Ion Selective Electrode Based On Carbon Nanotube-Silver Borate. Int. J. Electrochem. Sci. 2020, 15, 899–914. [Google Scholar] [CrossRef]
- Liang, R.; Yin, T.; Qin, W. A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Anal. Chim. Acta 2015, 853, 291–296. [Google Scholar] [CrossRef]
- Ghosh, T.; Chung, H.J.; Rieger, J. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite. Sensors 2017, 17, 2536. [Google Scholar] [CrossRef] [Green Version]
- Arada-Perez, M.A.; Yazdani-Pedram, M. Behavior of a polymeric liquid membrane ion- selective electrode for chloride ion. J. Chil. Chem. Soc. 2013, 58, 1957–1958. [Google Scholar] [CrossRef]
- Arada-Perez, M.A.; Yanes, S.L.; Cardona, M.; Aguilera, L.; Yazdani-Pedram, M. CopperII-Selective Electrodes based on 1-furoyl-3,3-diethylthiourea as a Neutral Carrier. J. Chil. Chem. Soc. 2010, 55, 371–373. [Google Scholar] [CrossRef]
- Anastasova-Ivanova, S.; Mattinen, U.; Radu, A.; Bobacka, J.; Lewenstam, A.; Migdalski, J.; Danielewski, M.; Diamond, D. Development of miniature all-solid-state potentiometric sensing system. Sens. Actuators B 2010, 146, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Ngoc Mai, P.T.; Hoa, P.T. Fabrication of Solid Contact Ion Selective Electrode for Mercury (II) Using Conductive Polymer Membrane. Mater. Trans. 2015, 56, 1428–1430. [Google Scholar]
- Rounaghi, G.; Kakhki, R.M. Highly Selective and Sensitive Coated-Wire Yttrium (III) Cation Selective Electrode Based on Kryptofix-22DD. J. Electrochem. Soc. 2011, 158, F121–F125. [Google Scholar] [CrossRef]
- Yu, S.; Yuan, Q.; Li, F.; Liu, Y. Improved potentiometric response of all-solid-state Pb2þ-selective electrode. Talanta 2012, 101, 546–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Ju, L.; Xiong, T.; Yancang, L.; Liu, Y. Solid-contact POlymeric Membrane electrode for Real-Time Monitoring of Lead Asorption. Int. J. Electrochem. Sci. 2015, 10, 5994–6001. [Google Scholar]
- Jaworska, E.; Schmidt, M.; Scarpa, G.; Maksymiuk, K.; Michalska, A. Spray-coated all-solid-state potentiometric sensors. Analyst 2014, 139, 6010–6015. [Google Scholar] [CrossRef]
- Arada-Perez, M.A.; Marin, L.P.; Quintana, J.C.; Yazdani-Pedram, M. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B 2003, 89, 262–268. [Google Scholar] [CrossRef]
- Telting-Diaz, M.; Bakker, E. Effect of Lipophilic Ion-Exchanger Leaching on the Detection Limit of Carrier-Based Ion-Selective Electrodes. Anal. Chem. 2001, 73, 5582–5589. [Google Scholar] [CrossRef]
- Cullen, W.; Turega, S.; Hunter, C.A.; Ward, M.D. pH-dependent binding of guests in the cavity of a polyhedral coordination cage: Reversible uptake and release of drug molecules. Chem. Sci. 2015, 6, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Ma, L. A Solid-contact Pb 2+ -selective Electrode with Carbon Nanotubes by Electrodeposition as Ion-to-electron Transducer. Electrochemistry 2015, 83, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Wang, N.; Wang, D.; Ma, H.; Lin, M. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem. Eng. J. 2016, 299, 150–155. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Yan, R.; Huang, H.; Wang, P. Disposable Multi-Walled Carbon Nanotubes-Based Plasticizer-Free Solid-Contact Pb 2+ Selective Electrodes with a Sub-PPB Detection Limit. Sensors 2019, 19, 1–13. [Google Scholar]
- Upadhyay, A.; Singh, A.K.; Bandi, K.R.; Jain, A.K. Fabrication of coated graphite electrode for the selective determination of europium (III) ions. Talanta 2013, 115, 569–576. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Svancara, I.; Walcarius, A.; Kalcher, K.; Vytras, K. Carbon paste electrodes in the new millennium. Cent. Eur. J. Chem. 2009, 7, 598–656. [Google Scholar] [CrossRef]
- Gooding, J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060. [Google Scholar] [CrossRef]
- Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Karimi-Maleh, H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. 2010, 640, 75–83. [Google Scholar] [CrossRef]
- Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor—Application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater. 2010, 183, 402–409. [Google Scholar] [CrossRef]
- Tavana, T.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq. 2012, 168, 69–74. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron. 2008, 24, 632–637. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Wang, H.; Zou, C.; Jiang, F.; Yang, P.; Du, Y. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B 2014, 204, 302–309. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Krishnamoorthy, K.; Sekar, C.; Wilson, J.; Kim, S.J. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B: Environ. 2014, 148, 22–28. [Google Scholar] [CrossRef]
- Du, H.; Ye, J.; Zhang, J.; Huang, X.; Yu, C. A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J. Electroanal. Chem. 2011, 650, 209–213. [Google Scholar] [CrossRef]
- Tan, F.; Cong, L.; Li, X.; Zhao, Q.; Zhao, H.; Quan, X.; Chen, J. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens. Actuators B 2016, 223, 599–606. [Google Scholar] [CrossRef]
- Khasanah, M.; Handajana, U.S.; Widati, A.A.; Abdulloh, A.; Rindarti, R.R. Construction and Performance of Creatinine Selective Electrode based on Carbon Paste-Imprinting Zeolite. Anal. Bioanal. Electrochem. 2018, 10, 429–438. [Google Scholar]
- Zou, C.; Yang, B.; Bin, D.; Wang, J.; Li, S.; Yang, P.; Wang, C.; Shiraishi, Y.; Du, Y. Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 2017, 488, 135–141. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2009, 22, 1027–1036. [Google Scholar] [CrossRef]
- Jawaheer, S.; White, S.F.; Rughooputh, S.D.D.V.; Cullen, D.C. Enzyme stabilization using pectin as a novel entrapment matrix in biosensors. Anal. Lett. 2002, 35, 2077–2091. [Google Scholar] [CrossRef]
- Willner, I.; Katz, E.; Willner, B. Electrical Contact of Redox Enzyme Layers Associated with electrodes: Routes to Amperometric Biosensors. Electroanalysis 1997, 9, 965–977. [Google Scholar] [CrossRef]
- Karube, I.; Nomura, Y. Enzyme sensors for environmental analysis. J. Mol. Catal. B Enzym. 2000, 10, 177–181. [Google Scholar] [CrossRef]
- Jomma, E.Y.; Ding, S. Recent Advances on Electrochemical Enzyme. Biosensors 2016, 12, 5–21. [Google Scholar]
- Erden, P.E.; Pekyarimci, S.; Kilic, E. Amperometric Enzyme Electrodes for Xanthine Determination with Different Mediators. Acta Chim. Slov. 2012, 59, 824–832. [Google Scholar]
- Achmann, S.; Hammerle, M.; Moos, R. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanalysis 2008, 20, 410–417. [Google Scholar] [CrossRef]
- Suprun, E.V.; Budnikov, H.C.; Evtugyn, G.A.; Brainina, K.Z. Bi-enzyme sensor based on thick-film carbon electrode modified with electropolymerized tyramine. Bioelectrochemistry 2004, 63, 281–284. [Google Scholar] [CrossRef]
- Bhattachayay, D.; Pal, P.; Banerjee, S.; Sanyal, S.K.; Turner, A.P.F.; Sarkar, P. Electrochemical acetylcholine chloride biosensor using an acetylcholine esterase biomimic. Anal. Lett. 2008, 41, 1387–1397. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Rodgriguez-Mendez, M.L.; Apetrei, C.; de Saja, J.A. Enzyme sensor based on carbon nanotubes/cobalt(II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sens. Actuators B 2018, 177, 138–144. [Google Scholar] [CrossRef]
- Kudo, H.; Yagi, T.; Chu, M.X.; Saito, H.; Morimoto, N.; Iwasaki, Y.; Akiyoshi, K.; Mitsubayashi, K. Glucose sensor using a phospholipid polymer-based enzyme immobilization method. Anal. Bioanal. Chem. 2008, 391, 1269–1274. [Google Scholar] [CrossRef]
- Hernandez-Cazares, A.S.; Aristoy, M.; Toldra, F. Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem. 2010, 123, 949–954. [Google Scholar] [CrossRef]
- Ajay, A.K.; Srivastava, D.N. Microtubular conductometric biosensor for ethanol detection. Biosens. Bioelectron. 2007, 23, 281–284. [Google Scholar] [CrossRef]
- Chuang, C.; Shih, J. Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sens. Actuators B 2001, 21, 1–8. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Anzai, J. Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications. J. Electrochem. 2001, 507, 250–255. [Google Scholar] [CrossRef]
- Yabuki, S.; Hirata, Y.; Sato, Y.; Iijima, S. Preparation of a Cellulose-based Enzyme Membrane Using Ionic Liquid to Lengthen the Duration of Enzyme Stability. Anal. Sci. 2012, 28, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammam, M.; Fransaer, J. Two-enzyme lactose biosensor based on beta-galactosidase and glucose oxidase deposited by AC-electrophoresis- Characteristics and performance for lactose determination in milk. Sens. Actuators B 2010, 148, 583–589. [Google Scholar] [CrossRef]
- Siqueira, J.R., Jr.; Molinnus, D.; Beging, S.; Schoning, M.J. Incorporating a Hybrid Urease-Carbon Nanotubes Sensitive Nanofilm on Capacitive Field-Effect Sensors for Urea Detection. Anal. Chem. 2014, 86, 5370–5375. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Deng, J. An Amperometric lactate Sensor Employing Tetrathiafulvalene in Nafion Film as Electron Shuttle. Electrochim. Acta 1995, 40, 1845–1849. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (iupac and acs) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Perone, S.P.; Kretlow, W.J. Anodic Stripping Voltammetry of Mercury(II) at the Graphite Electrode. Anal. Chem. 1965, 37, 968–970. [Google Scholar] [CrossRef]
- Watson, C.M.; Dwyer, D.J.; Andle, J.C.; Bruce, A.E.; Bruce, M.R.M. Stripping Analyses of Mercury Using Gold Electrodes: Irreversible Adsorption of Mercury. Anal. Chem. 1999, 71, 3181–3186. [Google Scholar] [CrossRef]
- Forsberg, G.; O’Laughlin, J.W.; Megargle, R.G.; Koirtyohann, S.R. Determination of Arsenic by Anodic Stripping Voltammetry and differential Pulse Anodic Stripping Voltammetry. Anal. Chem. 1975, 47, 1586–1592. [Google Scholar] [CrossRef]
- Boukoureshtlieva, R.I.; Hristov, S.M.; Milusheva, Y.D.; Atanassov, P.B.; Kaisheva, A.R. Mediated enzyme electrodes. Bulg. Chem. Commun. 2011, 43, 81–87. [Google Scholar]
- Yu, E.H.; Sundmacher, K. Enzyme electrodes for glucose oxication prepared by electropolymerization of pyrrole. Process. Saf. Environ. Prot. 2007, 85, 489–493. [Google Scholar] [CrossRef]
- Shen, L.; Chen, Z.; Li, Y.; He, S.; Xie, S.; Xu, X.; Liang, Z.; Meng, X.; Li, Q.; Zhu, Z.; et al. Electrochemical DNAzyme Sensor for Lead Based on Amplification of DNA-Au Bio-Bar Codes. Anal. Chem. 2008, 80, 6323–6328. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.G.G.; Marritt, S.J.; Kemp, G.L.; Gordon-Brown, P.; Butt, J.N.; Jeuken, L.J.C. The impact of enzyme orientation and electrode topology on the catalytic activity of adsorbed redox enzymes. Electrochim. Acta 2013, 110, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Electrode Material | Analyte | LOD (M) | Concentration Range (M) | pH Range | Nernstian Slope (mV/decade) | Longevity | Response Time (s) |
---|---|---|---|---|---|---|---|
[17] CNT-Silver Borate epoxy composite | BO33- (borate) | 2 × 10−5 | 10−1–10−4 | 4–8 | 34 | 3 months | 14 |
[19] screen printed carbon-contact with Chitosan Prussian Blue nanocomposite and doped PVC membrane | Na+ | 1–10−4 | 52.4 | 20 h | |||
[20] doped PVC with graphite-epoxy contact | Cl- | 10−2–10−6 | 2–6 | 63.43 ± 0.85 | 15 days | 25 | |
[21] doped PVC with graphite-epoxy contact | Cu2+ | 6.15 × 10−7 | 10−2–10−7 | 8–10 | 29.35 ± 0.6 | 20 days | 20 |
[22] doped PVC with PEDOT/gold contact, multi-electrode device | Pb2+ | ~10−8 | 2–9 | 59.8 ± 0.1 | 3 months | ~120 | |
[23] doped PVC with polypyrrole/carbon paste contact | Hg2+ | 6 × 10−10 | 10−2–10−9 | 3–4 | 23.7 ± 1.4 | 60 | |
[24] doped PVC on platinum contact | Y+3 | 2.15 × 10−9 | 10−1–10−8 | 2–6 | 18.89 ± 0.43 | ~15 | |
[25] doped PVC on DH-6T/gold contact | Pb2+ | 3.16 × 10−7 | 10−2–10−7 | 28.1 ± 0.4 | |||
[28] doped PVC on graphite-epoxy contact | NO3- (nitrate) | 1.95 × 10−5 | -59.9 ± 0.9 | >6 months | |||
[26] doped PVC on F8BT/gold contact | Pb2+ | 3 × 10−8 | 10−3–10−8 | 30.1 | ~10–15 | ||
[27] spray-coated doped PVC on spray-coated CNTs | K+ | 3.16 × 10−7 | 0.1–10−9 | 59.8 ± 0.4 | >2 weeks | ~20 | |
[27] spray-coated doped PVC on spray-coated CNTs | H+ | 10−1–10−5 | 53.7 ± 1.1 | ~20 | |||
[27] spray-coated doped PVC on spray-coated CNTs | Cl- | 10−1–10−5 | -56.3 ± 1.3 | ~20 | |||
[31] doped PVC on CNT modified GC electrode | Pb2+ | 10−3–10−8 | 29.0 ± 0.8 | ~5–20 | |||
[32] doped polypyrrole on graphene oxide modified GC electrode | Pb2+ Cd2+ | 7.2 × 10−7–4 × 10−8 | 4.5 | Several weeks | |||
[33] doped poly(MMA-co-BA) on MWCNT modified Au disc electrode | Pb2+ | 10−10 | 1.5 × 10−3–2.0 × 10−10 | 29.1 ± 0.5 | |||
[34] doped PVC on graphite rod | Eu3+ | 1 × 10−1–5.7 × 10−8 | 2.7–9.0 | 19.5 ± 0.2 | 10 |
Electrode Material | Analyte | LOD (M) | Concentration Range (M) | pH Range | Longevity | RT (s) |
---|---|---|---|---|---|---|
[43] Au nanoplates on reduced graphene oxide modified GC electrode | ascorbic acid dopamine * uric acid ** | 5.1 × 10−5 1.4 × 10−6 * 1.8 × 10−6 ** | 1.5 × 10−3–2.4 × 10−4 41. × 10−5–6.8 × 10−6 * 5.3 × 10−5–8.8 × 10−6 ** | 7 days | ||
[44] Fe2O3 and reduced graphene oxide composite modified GC electrode | NO2− (nitrite) | 1.5 × 10−8 | 7.8 × 10−4–5.0 × 10−8 | 10 days | ||
[45] graphene-modified GC electrode | Hydroquinone * Catechol ** | 1.5 × 10−8 * 1.0 × 10−8 ** | 5 × 10−5–1 × 10−6 | ~4.5–6.2 | 3 weeks | |
[5] gold nanorods on graphene-oxide modified GC electrode | miRNA-155 | 6 × 10−16 | 8 × 10−12–2 × 10−15 | |||
[46] molecularly imprinted polypyrrole on graphene quantum dot modified GC electrode | Bisphenol A | 4 × 10−8 | 5 × 10−5–1 × 10−7 | 15 days | ||
[47] imprinted zeolite in carbon paste | creatinine | 7.9 × 10−8 | 10−5–10−7 | 7 | 7 weeks | <50 |
[48] Au nanoparticles on flower-graphene modified GC electrode | NO2- (nitrite) | 1 × 10−8 | 2.04 × 10−2–1.25 × 10−6 | |||
[39] ferrocenedicarboxylic acid with MWCNTs in carbon paste | 6-thioguanine Folic acid * | 8.5 × 10−9 1.1 × 10−6 * | 1 × 10−4–1 × 10−8 1.52 × 10−4–4.6 × 10−6 * | 9 | 20 days | |
[28] ionophore-doped MWCNT-ionic liquid paste | Hg2+ | 2.5 × 10−9 | 1.0 × 10−4–5.0 × 10−9 | 2.0–4.3 | >55 days | ~5 |
[49] reduced graphene oxide screen-printed on PVC | ascorbic acid dopamine * uric acid ** | 9.5 × 10−7 1.2 × 10−7 * 2.0 × 10−7 ** | 4.5 × 10−3–4.0 × 10−6 2.0 × 10−3–5 × 10−7 * 2.5 × 10−3–8 × 10−7 ** | ~10–15 | ||
[42] palladium, carbon nanofiber nanocomposites on PVC | ascorbic acid dopamine * uric acid ** | 1.5 × 10−5 2 × 10−7 * 7 × 10−7 ** | 4 × 10−3–5 × 10−5 1.6 × 10−4–5 × 10−7 * 2 × 10−4–2 × 10−6 ** |
Electrode Material | Analyte | LOD (M) | Sensitivity (μA/mM) | pH Range | Longevity | RT (s) |
---|---|---|---|---|---|---|
[55] xanthine oxidase in carbon paste (1,4-benzoquinone modification) | Xanthine | 1 × 10−7 | 6.91 | 7.0–8.5 | 14 days | 100 |
[55] xanthine oxidase in carbon paste (PVF modification) | Xanthine | 1 × 10−7 | 4.61 | 7.0–8.5 | 7 days | 50 |
[56] formaldehyde dehydrogenase on graphite gauze | formaldehyde (gas-phase) | 0.03 ppm | 2 μA/ppm | 6.5–8.5 | 300 | |
[57] cholinesterase and peroxidase immobilized in polytyramine on epoxy-carbon film | aniline hydroquinone coumaphos chlorpyrifos-methyl | 3 × 10−8– 3 × 10−4 | 1.3-1126 | |||
[58] acetylcholine esterase biomimic immobilized in acrylamide and BIS on carbon | acetylcholine | 4 × 10−3 | ||||
[59] tyrosinase immobilized on carbon nanotube paste modified with cobalt phthalocyanine | Catechol * Catechin ** | 1.66 × 10−6 * 6.32 × 10−6 ** | 64.0 * | 7.0 | <1 month | |
[51] enzymes immobilized in pectin on screen-printed graphite | Glucose Sucrose D-glucose Ascorbic Acid | 25 weeks | ||||
[60] glucose oxidase immobilized in MPC-co-PMD on dissolved oxygen electrode | glucose | 1.95 × 10−5 | 0.992 | <72 hr at RT 14 days at 4 °C | 51.8 | |
[61] xanthine oxidase in Immunodyne® ABC membrane in Teflon on oxygen electrode | hypoxanthine | 2 months at 40 °C | ||||
[62] alcohol dehydrogenase and coenzyme immobilized in polyaniline on gold-coated polycarbonate | ethanol | 0.092 | 7.0 | ~15 min | ||
[63] glucose oxidase with C-60 fullerene immobilized on silica and PZ quartz | glucose | 3.9 × 10−5 | >3 months | |||
[64] glucose oxidase and horseradish peroxidase immobilized in concanavalin A on GC electrode | glucose | 9.5–15.0 | ~7 | <1 month @ 4 °C | ~20 | |
[65] glucose oxidase immobilized in cellulose on GC electrode | glucose | 1 × 10−5 | ~0.125 | 6 months @ 4 °C | ~10 | |
[66] ß-galactosidase and glucose oxidase electrodeposited on Pt | lactose | <1.4 × 10−2 | 0.111 ± 0.002 | 4.9 | ~8 | |
[67] urease with PAMAM and CNTs on FETs | urea | <1 × 10−4 | ||||
[68] lactate oxidase with TTF and Nafion on GC electrode | lactate | <5 × 10−4 | 6.5–8.0 | ~2 months | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skinner, W.S.; Ong, K.G. Modern Electrode Technologies for Ion and Molecule Sensing. Sensors 2020, 20, 4568. https://doi.org/10.3390/s20164568
Skinner WS, Ong KG. Modern Electrode Technologies for Ion and Molecule Sensing. Sensors. 2020; 20(16):4568. https://doi.org/10.3390/s20164568
Chicago/Turabian StyleSkinner, William S., and Keat Ghee Ong. 2020. "Modern Electrode Technologies for Ion and Molecule Sensing" Sensors 20, no. 16: 4568. https://doi.org/10.3390/s20164568
APA StyleSkinner, W. S., & Ong, K. G. (2020). Modern Electrode Technologies for Ion and Molecule Sensing. Sensors, 20(16), 4568. https://doi.org/10.3390/s20164568