Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization
<p>3-dimension model for the underwater acoustic sensor networks (UASNs). Each hydrophone receives the signal from the targeted acoustic source.</p> "> Figure 2
<p>Absorption coefficient <math display="inline"><semantics> <mrow> <mn>10</mn> <mi>log</mi> <mi>a</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Time difference of arrival (TDOA) in 2-dimension underwater plane (the yellow area is the location of the acoustic source).</p> "> Figure 4
<p>Mean square error (MSE) comparison between conventional TDOA and the proposed TDOA-majorization-minimization (T-MM) versus <math display="inline"><semantics> <mrow> <msup> <mi>δ</mi> <mn>2</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 5
<p>Conventional localization algorithm’s MSE comparison to the squared position error bound (SPEB) versus <math display="inline"><semantics> <mi>δ</mi> </semantics></math>.</p> "> Figure 6
<p>Start with four different initial points. True position of target is <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. Initial points calculated by the initial gradient algorithm is T-MM-INIT. The randomly selected initial points are <math display="inline"><semantics> <mrow> <msubsup> <mi>x</mi> <mn>0</mn> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>6</mn> <mo>,</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>x</mi> <mn>0</mn> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>x</mi> <mn>0</mn> <mrow> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>,</mo> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Comparison between the proposed T-MM scheme and conventional USR-LS localization scheme in terms of the MSE under different <math display="inline"><semantics> <mrow> <msup> <mi>δ</mi> <mn>2</mn> </msup> </mrow> </semantics></math> values in 3D scenario.</p> "> Figure 8
<p>Variation of MSE of position <math display="inline"><semantics> <mi>x</mi> </semantics></math> with more sensors and varying measurement noise, the sensors number is m = 4, 5, 6, 7.</p> "> Figure 9
<p>MSE comparison between conventional TDOA and the proposed T-MM versus measurement noise error over the bellhop underwater channel model.</p> "> Figure 10
<p>T-MM’s MSE comparison to the USR-LS’s MSE versus noise variance in 3D scenario over the bellhop underwater channel model.</p> "> Figure 11
<p>Variation of MSE of position <math display="inline"><semantics> <mi>x</mi> </semantics></math> versus the number of sensors and varying measurement noise under bellhop underwater channel model.</p> ">
Abstract
:1. Introduction
- (1)
- We investigated the unconstrained optimization problem based on least squares (LS) and maximum likelihood (ML) localization and applied it to the TDOA acoustic-based localization in the underwater applications. The localization accuracy of our proposed scheme is characterized and evaluated by using the SPEB.
- (2)
- The proposed T-MM algorithm is using a multistep localization scheme by dividing the underwater location operation into three steps. First, estimate the distance between the acoustic source and sensor nodes by using the TDOA estimation algorithm. Second, the initial point is adjusted for the MM-algorithm by using an initial point gradient algorithm to improve the MM-algorithm operation. In the third operational step, the obtained initial point is used via the MM-algorithm to improve the localization accuracy.
- (3)
- In this paper, we drove a mathematical framework for the proposed T-MM acoustic-based localization algorithm.
- (4)
- We compare the performance of the proposed T-MM algorithm in terms of estimation accuracy with some of the state of the art acoustic-based localization techniques used currently in the underwater localization. Based on the simulation results, the performance of the proposed T-MM algorithm is more superior even under high underwater noise and its performance is evaluated by using the SPEB metric.
2. Related Works
3. Preliminaries
3.1. System Model of the Underwater Acoustic Sensors Networks
3.2. Communication Model of the UASNs
4. Proposed Localization Algorithm Based on Majorization-Minimization Optimization
4.1. Problem Formulation
4.2. TDOA-Based Measurement Using Straight Line Propagation Model
Algorithm 1 TDOA measurements in 2-D underwater plane |
Input: Coordinate of hydrophone. Output: . Steps: 1: Calculation time difference by . 2: Substitute into Equations (15)–(17) to get . 3: Substitute into (14) to get . 4: End |
4.3. Majorization-Minimization Algorithm Based TDOA
5. Initial Point and Performance Metrics
5.1. Initial Point Design and T-MM Convergence
Algorithm 2 an initial point algorithm |
Input: . Output: . Steps: 1: Set k to be an index for which . 2: Set 3: While 4: Set . 5: End |
Algorithm 3 T-MM underwater acoustic-based location algorithm. |
Input: Set the initial point by Algorithm 2 and the parameter . And calculate distance by Equation (7) mentioned in Section 4. Output: Steps: 1: Set the number of iterations ; 2: Set ; 3: if ; 4: if 5: Go to step 9; 6: else if 7: update as (24); 8: ; 9: end if |
5.2. Squared Position Error Bound (SPEB)
6. Numerical Simulation and Discussion
6.1. Experiment 1: Statistical Underwater Acoustic Channel Model
6.2. Experiment 2: Bellhop Underwater Channel Model
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jindal, H.; Saxena, S.; Singh, S. Challenges and issues in underwater acoustics sensor networks: A review. In Proceedings of the 2014 International Conference on Parallel, Distributed and Grid Computing, Solan, India, 1–13 December 2014; pp. 251–255. [Google Scholar]
- Heidemann, J.; Stojanovic, M.; Zorzi, M. Underwater sensor networks: Applications, advances and challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, H.; Fazel, F.; Stojanovic, M.; Leus, G. Collision Tolerant and Collision Free Packet Scheduling for Underwater Acoustic Localization. IEEE Trans. Wirel. Commun. 2015, 14, 2584–2595. [Google Scholar] [CrossRef]
- Zhang, W.; Han, G.; Wang, X.; Guizani, M.; Fan, K.; Shu, L. A Node Location Algorithm Based on Node Movement Prediction in Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Technol. 2020, 69, 3166–3178. [Google Scholar] [CrossRef]
- Han, G.; Jiang, J.; Shu, L.; Xu, Y.-J.; Wang, F. Localization Algorithms’ of Underwater Wireless Sensor Network: A Survey. Sensors 2012, 12, 2026–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekhar, V.; Seah, W.K.; Choo, Y.S.; Ee, H.V. Localization in Underwater Sensor Networks:Survey and Challenges. In Proceedings of the 1st ACM International Workshop on Underwater Networks, Los Angeles, CA, USA, 25 September 2006; pp. 33–40. [Google Scholar]
- Heidemann, J.; Li, Y.; Syed, A. Underwater Sensor Networking: Research Challenges and Potential Applications; USCISI Technical Report; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Shen, Y.; Win, M.Z. Fundamental Limits of Wideband Localization—Part I: A General Framework. IEEE Trans. Inf. Theory 2010, 56, 4956–4980. [Google Scholar] [CrossRef]
- Shen, Y.; Win, M.Z. Fundamental Limits of Wideband Localization Accuracy via Fisher Information. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference, Kowloon, China, 11–15 March 2007; pp. 3046–3051. [Google Scholar]
- Huai, H.; Rosa, Z.Y. AoA assisted localization for underwater Ad-Hoc sensor networks. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [Google Scholar]
- Nguyen, T.L.N.; Shin, Y. Improved RSS-based Localization Using Linear Regression Approach in UWSNs. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 1208–1213. [Google Scholar]
- Ameer, P.M.; Jacob, L. Localization Using Ray Tracing for Underwater Acoustic Sensor Networks. IEEE Commun. Lett. 2010, 14, 930–932. [Google Scholar] [CrossRef]
- Gong, Z.; Li, C.; Jiang, F. AUV-Aided Joint Localization and Time Synchronization for Underwater Acoustic Sensor Networks. IEEE Signal Process. Lett. 2018, 25, 477–481. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y. Time Synchronization for Mobile Underwater Sensor Networks. J. Netw. 2013, 8, 116. [Google Scholar] [CrossRef]
- Kouzoundjian, B.; Beaubois, F.; Reboul, S.; Choquel, J.B.; Noyer, J. A TDOA underwater localization approach for shallow water environment. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–4. [Google Scholar]
- Zhang, B.; Hu, Y.; Wang, H.; Zhuang, Z. Underwater Source Localization Using TDOA and FDOA Measurements With Unknown Propagation Speed and Sensor Parameter Errors. IEEE Access 2018, 6, 36645–36661. [Google Scholar] [CrossRef]
- Hussein, H.; Esmaiel, H.; Jiang, D. Fully Generalized Spatial Modulation Technique for Underwater Communication. Electron. Lett. 2018, 54, 907–909. [Google Scholar] [CrossRef]
- Qasem, Z.; Esmaiel, H.; Sun, H.; Wang, J.; Miao, Y.; Anwar, S. Enhanced Fully Generalized Spatial Modulation for the Internet of Underwater Things. Sensors 2019, 19, 1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaiel, H.; Qasem, Z.; Sun, H.; Wang, J.; Junejo, N. Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things. Sensors 2019, 19, 5271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; N’Doye, I.; Ballal, T.; Al-Naffouri, T.Y.; Alouini, M.; Laleg-Kirati, T. Localization and Tracking Control Using Hybrid Acoustic-Optical Communication for Autonomous Underwater Vehicles. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Ullah, I.; Chen, J.; Su, X.; Esposito, C.; Choi, C. Localization and Detection of Targets in Underwater Wireless Sensor Using Distance and Angle Based Algorithms. IEEE Access 2019, 7, 45693–45704. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Zheng, C.; Fu, J.; Zhao, C. Underwater Acoustical Localization of the Black Box Utilizing Single Autonomous Underwater Vehicle Based on the Second-Order Time Difference of Arrival. IEEE J. Ocean. Eng. 2019, 1–12. [Google Scholar] [CrossRef]
- Biswas, P.; Lian, T.-C.; Wang, T.-C.; Ye, Y. Semidefinite Programming Based Algorithms for Sensor Network Localization. TOSN 2006, 2, 188–220. [Google Scholar] [CrossRef]
- Luo, Z.-Q.; Ma, W.-k.; So, A.; Ye, Y.; Zhang, S. Semidefinite Relaxation of Quadratic Optimization Problems. Signal Process. Mag. IEEE 2010, 27, 20–34. [Google Scholar] [CrossRef]
- Zaeemzadeh, A.; Joneidi, M.; Shahrasbi, B.; Rahnavard, N. Robust Target Localization Based on Squared Range Iterative Reweighted Least Squares. In Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 22–25 October 2017; pp. 380–388. [Google Scholar]
- Beck, A.; Stoica, P.; Li, J. Exact and Approximate Solutions of Source Localization Problems. IEEE Trans. Signal Process. 2008, 56, 1770–1778. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M.; Chikishev, Z. Iterative Minimization Schemes for Solving the Single Source Localization Problem. SIAM J. Optim. 2008, 19, 1397–1416. [Google Scholar] [CrossRef]
- So, A.; Ye, Y. Theory of semidefinite programming for sensor network localization. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, BC, Canada, 23–25 January 2005; pp. 405–414. [Google Scholar]
- Erol-Kantarci, M.; Mouftah, H.T.; Oktug, S. A Survey of Architectures and Localization Techniques for Underwater Acoustic Sensor Networks. IEEE Commun. Surv. Tutor. 2011, 13, 487–502. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. Gradient-based algorithms with applications to signal-recovery problems. In Convex Optimization in Signal Processing and Communications; Palomar, D.P., Eldar, Y.C., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 42–88. [Google Scholar]
- Cheung, K.W.; Ma, W.K.; So, H.C. Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; pp. 2–145. [Google Scholar]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Shen, Y.; Dai, W.; Win, M.Z. Optimal power allocation for active and passive localization. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 3713–3718. [Google Scholar]
- Jeong, S.; Simeone, O.; Haimovich, A.; Kang, J. Beamforming Design for Joint Localization and Data Transmission in Distributed Antenna System. IEEE Trans. Veh. Technol. 2015, 64, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Zhu, J.; Xu, Z. Majorization–Minimization-Based Target Localization Problem From Range Measurements. IEEE Commun. Lett. 2020, 24, 558–562. [Google Scholar] [CrossRef]
T-MM | SR-LS | USR-LS | SWLS | SDR | SPEB | |
---|---|---|---|---|---|---|
2.34 | ||||||
3.95 | 44.98 | |||||
4.94 | 6.42 | 7.93 | 75.30 | 115.09 | 4.44 |
Environmental Parameters | Water Column | Bottom Halfspace |
---|---|---|
Depth range | 0~20 | 20 |
Compressional sound speed | 1540~1543 () | 2000 |
Density | 1021 / | 1810/ |
Shear sound speed | 0 | 0 |
Compressional wave absorption | [6.93 × 6.93 × ] | 0.5 |
Shear wave absorption | 0 | 0 |
Wind speed | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sun, H.; Esmaiel, H. Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization. Sensors 2020, 20, 4457. https://doi.org/10.3390/s20164457
Li S, Sun H, Esmaiel H. Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization. Sensors. 2020; 20(16):4457. https://doi.org/10.3390/s20164457
Chicago/Turabian StyleLi, Shuangshuang, Haixin Sun, and Hamada Esmaiel. 2020. "Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization" Sensors 20, no. 16: 4457. https://doi.org/10.3390/s20164457
APA StyleLi, S., Sun, H., & Esmaiel, H. (2020). Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization. Sensors, 20(16), 4457. https://doi.org/10.3390/s20164457