A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices
"> Figure 1
<p>Schematic time line of the main Hall related observed Effects. OHE—Original Hall Effect; AHE—Anomalous Hall Effect; SHE—Spin Hall Effect; IQHE—Integer Quantum Hall Effect; FQHE—Fractional Quantum Hall Effect; ISHE—Inverse Spin Hall Effect; QSHE—Quantum Spin Hall Effect; QAHE—Quantum Anomalous Hall Effect; PHE—Planar Hall Effect; VHE—Valley Hall Effect; PIHE—Photo-Induced Hall Effect.</p> "> Figure 2
<p>Enhanced schematic time line of the main Hall related observed Effects vs. the integrated devices.</p> "> Figure 3
<p>The main known Hall Effects and the year of their publication. (<b>a</b>) Original Hall Effect (OHE) [<a href="#B1-sensors-20-04163" class="html-bibr">1</a>], 1879; (<b>b</b>) Anomalous Hall Effect (AHE) [<a href="#B6-sensors-20-04163" class="html-bibr">6</a>], 1881; (<b>c</b>) Spin Hall Effect (SHE) [<a href="#B41-sensors-20-04163" class="html-bibr">41</a>,<a href="#B42-sensors-20-04163" class="html-bibr">42</a>], 1971; (<b>d</b>) Quantum Hall Effect (QHE) [<a href="#B9-sensors-20-04163" class="html-bibr">9</a>,<a href="#B10-sensors-20-04163" class="html-bibr">10</a>], 1980; (<b>e</b>) Inverse Spin Hall Effect (ISHE), 1984 [<a href="#B50-sensors-20-04163" class="html-bibr">50</a>,<a href="#B62-sensors-20-04163" class="html-bibr">62</a>,<a href="#B63-sensors-20-04163" class="html-bibr">63</a>]; (<b>f</b>) Quantum Spin Hall Effect (QSHE) [<a href="#B11-sensors-20-04163" class="html-bibr">11</a>,<a href="#B12-sensors-20-04163" class="html-bibr">12</a>], 2007; (<b>g</b>) Quantum Anomalous Hall Effect (QAHE) [<a href="#B13-sensors-20-04163" class="html-bibr">13</a>,<a href="#B14-sensors-20-04163" class="html-bibr">14</a>,<a href="#B15-sensors-20-04163" class="html-bibr">15</a>,<a href="#B16-sensors-20-04163" class="html-bibr">16</a>], 2013; (<b>h</b>) Photo-Induced Hall Effect (PIHE), 2018 [<a href="#B58-sensors-20-04163" class="html-bibr">58</a>].</p> "> Figure 4
<p>Design flow for a three-dimensional (3D) Hall Bar. (<b>a</b>) Preliminary design and definition of ports. (<b>b</b>) Layers definition. (<b>c</b>) Standard automatic mesh. (<b>d</b>) Adapted manual mesh with different density zones, used with tetrahedron default elements or extra-fine elements.</p> "> Figure 5
<p>Hall Amplifier Nanoscale Device (HAND) two-dimensional (2D) structure in Comsol. (<b>a</b>) With activated field. (<b>b</b>) 3D view. (<b>c</b>) In simulation box.</p> "> Figure 6
<p>Magnetic flux density Norm (T), produced by a 15 nm copper coil with a number of loops, and an input electric current of 30 μA. (<b>a</b>) Face-view, five loops; (<b>b</b>) cross-view, five loops; (<b>c</b>) scale, five loops; (<b>d</b>) face-view, ten loops; (<b>e</b>) cross-view, ten loops; (<b>f</b>) scale, ten loops.</p> "> Figure A1
<p>Condensed overview of this survey.</p> ">
Abstract
:1. Introduction
1.1. Hall Effects—Brief History and Evolution
1.2. Hall Effect Integration in Design Levels: Devices, Circuitry, and Process Development Kits
1.3. Hall Effect-Based Devices—Why?
2. Hall Effects Family Principles—Brief Qualitative Review
2.1. OHE—Original Hall Effect, 1879
2.2. AHE—Anomalous Hall Effect, 1881
2.3. SHE—Spin Hall Effect, 1971
2.4. IQHE—Integer Quantum Hall Effect, 1980
2.5. FQHE—Fractional Quantum Hall Effect, 1982
2.6. ISHE—Inverse Spin Hall Effect, 1984
2.7. QSHE—Quantum Spin Hall Effect, 2007
2.8. QAHE—Quantum Anomalous Hall Effect, 2013
2.9. PIHE—Photo-Induced Hall Effect, 2018
2.10. PHE—Planar Hall Effect, 1968
2.11. VHE—Valley Hall Effect, 2014
3. Review of Analytical and Numerical Models
3.1. Classical Hall Effect
3.2. DC Hall Magneto-Resistance
3.3. Dynamic Magneto-Conductivity Tensor for Free Carrier
3.4. Two-Dimensional Electron Gas (2DEG) and Heterodyne Hall Effect
3.5. Free Electron Model and Dielectric Tensor
3.6. Numerical Models and Tools—Simulation, Mesh, and Accuracy Considerations
4. Review of Macroscale Hall Effect-Based Devices
4.1. Planar Hall Effect (PHE) Sensors
4.2. Soft Skin Sensors (SSS)
Type (Measured Quantity) | Definition and Applications | Domain | Year |
---|---|---|---|
Angle sensors [82,83] | Contactless sensor conceived for measuring the rotation angle of a shaft. Signal proportional to angular position. | Automotive, Aeronautics | 2013, 2001 |
Position and speed sensors [84,85] | Position and speed control of Brushless Direct Current (BLDC) motors using several Hall sensors inside the stator on the non-driving end of the motor. | Medical, Military, Robotics | 2010, 2019 |
Current sensors [86,87] | Adjustable sensor for currents ranging from µA to kA. | Power | 2016, 2018 |
Curvature Bend sensors [88] | Large curvature bend sensor based on internal Hall Effect sensor in a cable. Feedback needed for analog control. | Robotics, Motion | 2016 |
Flow rate sensors [89,90] | Measure flow rate of fluids or air. Self-service gas stations sharing demand for pumps with remote reading. Monitoring milk yield. | Fluids, Automotive, Farming | 2013, 2013 |
Magnetic Field Components sensors [79,91,92,93] | Hall Effect-based magnetometers and PHE sensors with high resolution. | Biomedical | 2018, 2019, 2020, 2013 |
Position sensors [72,94] | Position in linear motors using magnetic sensors. Office machine sensor for equipment with moving parts such as copiers, fax, printers. | Robotics, Office | 2015, 2017 |
Pressure sensors [95,96] | Pressure measurement, piston position in a high-pressure. Sensor indication that a machine is not at level. | Industrial, Automotive, Control | 2011, 2015 |
Proximity sensors [74] | Linear Proximity Sensors (LSPs) with mid- and low-range measurement capabilities widely used in industrial and non-industrial applications. | Industrial, non-industrial | 2016 |
Target identification, location and movement sensors [97] | Radio Frequency Identification (RFID) technology for identification of road traffic signals, and high accuracy vehicle speed measurement with Hall Effect-based sensor, placed on vehicle wheel. | Automotive | 2010 |
Rounds Per Minute (RPM) sensors [98] | Speed control, motor timing control, zero speed detection, tape rotation, under/over speed detection, disk speed detection, automobile transmission controller, fan movement, shaft rotation counter, bottle counting, radical position indication, drilling machines, linear or rotary positioning, camera shutter position, rotary position sensing, flow-rate meter, tachometer pick-ups. | Automotive | 2014 |
Soft tactile and skin sensors [81,99,100] | Magnetic-based soft skin/tactile sensors. Current detection of several levels. | Robotics | 2016, 2019, 2017 |
Speed sensors [101] | Pipeline Inspection Gauge (PIG) speed based on Hall Effect sensor. Operations number sequencing and/or duration. | Petroleum | 2017 |
Tactile sensors [78,102,103] | Hall Effect-based soft tactile sensors. | Robotics | 2019, 2020, 2016 |
Temperature sensors [104,105] | Temperature measurement. Distributor mounted ignition sensor. Temperature range of −40 to 150 °C. Door electrical interlock for ignition system. | Automotive, Office | 2016 |
5. Review of Microscale Hall Effect-Based Devices
5.1. CMOS Hall Sensors in Silicon
5.2. Bipolar PNP Junctions in Graphene
Type | Definition and Applications | Domain | Year |
---|---|---|---|
CMOS sensors [77,108] | CMOS Hall Effect Sensors | Microelectronics | 2013, 2017 |
CHOPFET [112] | Chopper-Stabilized MAGFET | Microelectronics | 2018 |
GHE [114] | Graphene Hall Element | Microelectronics | 2013 |
HEBCS [70] | Hall Effect-Based Current Sensor | 2018 | |
µA Hall sensor [116] | Switching function in low-power | Microelectronics | 2018 |
MOS current sensor [110,117] | Power Electronics Converters | Microelectronics | 2015, 2017 |
MOS magnetic sensor [111] | Technique to eliminate influences of packaging stresses and temperature variations | Microelectronics | 2001 |
PHE sensors [80] | Sensitive magnetic field detection | Magnetics | 1995 |
SHEM [118] | Scanning Hall Effect Microscope | Geology | 2019 |
VHS [66] | Vertical Hall Sensor | Microelectronics | 2013 |
6. Review of Nanoscale Hall Effect-Based Devices
6.1. Hall Effect Sensors (HES)
6.2. Hall Amplifier Nanoscale Device (HAND)
6.3. Hall Quantum-Based Structures
Type | Definition and Applications | Domain | Year | Effect |
---|---|---|---|---|
Amplifier (THz) [71] | Hall Amplifier Nanoscale Device (HAND) | Electronics | 2019 | OHE |
Hall Nano Probes [133] | Magnetometers, active areas < 100 × 100 nm2 | Imaging | 2006 | |
LHEIC [130] | Linear Hall Effect Integrated Circuit | 2015 | LHE | |
LF AHE sensor [134] | Low-Frequency noise AHE magnetic sensor | Electronics | 2019 | AHE |
P3HT-ZnO NW [135] | P3HT-ZnO Nanowires Gas Sensor | Chemistry | 2018 | |
PHRB [136] | Planar Hall Resistance Biosensor | Biology | 2020 | PHE |
PTI [132] | Photonic Topological Insulator structure | Theoretical | 2016 | QVHE |
QVHE structure [131] | Quantum Valley Hall Effect SiC monolayer | Theoretical | 2020 | QVHE |
Sensor [119] | Magnetic field diagnosis and measurement | Biology | 2015 | |
Sensor [120] | High-resolution ambient magnetic imaging | Imaging | 2019 |
7. Forecast, Expected Trends, and Perspectives
7.1. Review of the Nanoscale Challenges
7.1.1. Choice of the Material: Dimensions, Application, and Integration
Symbol/Formula | Name | Main References |
---|---|---|
Al | Aluminium | [31] |
AlGaAs | Aluminium Gallium Arsenide | [130] |
Fe | Iron | [80] |
Fe-Pt | Iron-Platinium ferromagnetic alloys | [134] |
Ga | Gallium | [71,116] |
GaAs | Gallium Arsenide | [71,116] |
GaAs-InGaAs-AlGaAs | Gallium Arsenide—Indium Gallium Arsenide—Aluminum Gallium Arsenide | [130] |
C140H42O20 | Graphene | [114,119,120] |
h-BN/graphene/h-BN | Graphene hetero-structures | [137] |
InGaAs | Indium Gallium Arsenide | [130] |
InSb | Indium Antimonide | [121] |
Mg | Magnesium | [80] |
MgO | Magnesium Oxide | [80] |
Nd-Fe-B | Neodymium magnet coated with Nickel | [81] |
Ni | Nickel | [80] |
Ni-Fe-Mo | Permalloy (usually 80% nickel, 20% iron) | [79,80] |
Pd | Palladium | [80] |
P3HT-ZnO | Zinc Oxide (ZnO) nanowire array fabricated by Atomic Layer Deposition and organic material p-type semiconductor poly(3-hexylthiophene) (P3HT) | [135] |
Si | Silicon | [77,80,108,109] |
Ta/NiFe/Cu/IrMn/Ta/Si | Ta (5 nm)/NiFe (10 nm)/Cu (x = 0~1.2 nm)/IrMn (10 nm)/Ta (5 nm)/Si substrate | [136] |
7.1.2. Classic limitations: Mega-Magnet, High Temperature, and Self-Heating
7.1.3. Quantum Limitations and Ballistic Models
7.1.4. Fabrication and Smooth Integration
7.2. Expected Trends
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Electro-Magnetic Parameters and Units
Quantity | Symbol | Unit Name (SI) | Unit |
---|---|---|---|
Electrical parameters and quantities: | |||
Electric Field | Volt/meter | V/m | |
Current | I | Ampere | A |
Charge | q | Coulomb | C |
Voltage | V | Volt | V |
Power | P | Watt | W |
Resistance | R | Ohm | Ω |
Impedance | Z | Ohm | Ω |
Capacitance | C | Farad | F |
Inductance | L | Henry | H |
Frequency | f | Hertz | Hz |
Period | T | Seconds | s |
Magnetic parameters and quantities: | |||
Magnetic Field | Tesla | T | |
Magnetic Flux | Φ | Weber | Wb |
Magnetic Field Strength | H | Ampere/meter | A/m |
Permeance | P | Henry | H |
Dimension parameters and quantities: | |||
Length | L | Meter | m |
Mass | m | Kilogram | Kg |
Time | t | Second | s |
Appendix B. Hall Effect Acronyms
Acronym | Definition | Domain |
---|---|---|
2DEG | 2D Electron Gas | Physical Scale |
DOF | Degree of Freedom | Physical Parameter |
DSHE | Direct Spin Hall Effect | Physical Effect |
EM | Electro-Migration | Physical Effect |
FE | Finite Elements | Software |
FEM | Finite Element Method | Software |
FEMM | Finite Element Method Magnetics | Software |
FQHE | Fractional Quantum Hall Effect | Physical Effect |
GHE | Graphene Hall Element | Device |
HAND | Hall Amplifier Nanoscale Device | Device |
HB | Hall Bar | Device |
HE | Hall Effect | Physical Effect |
HES | Hall Effect Sensors | Device |
HEBCS | Hall Effect-Based Current Sensor | Device |
IQHE | Integer Quantum Hall Effect | Physical Effect |
HV | Hall Voltage (VH) | Physical Parameter |
ISHE | Inverse Spin Hall Effect | Physical Effect |
LHEIC | Linear Hall Effect Integrated Circuit | Circuit |
LPS | Linear Proximity Sensor | Device |
MBE | Molecular Beam Epitaxy | Technology |
MEF | Magnetic and Electric Fields | Physical Effect |
MEMS | Micro-Electro-Mechanical System | Circuit |
OHE | Original Hall Effect, Ordinary Hall Effect | Physical Effect |
PDK | Process Development Kit | Technology |
PHE | Planar Hall Effect (Sensor) | Device |
PIHE | Photo-Induced Hall Effect | Physical Effect |
PTI | Photonic Topological Insulator | Structure |
Q&R | Quality and Reliability | Physical Area |
QAHE | Quantum Anomalous Hall Effect | Physical Effect |
QHE | Quantum Hall Effect | Physical Effect |
QHS | Quantum Hall State | Physical Effect |
QSHE | Quantum Spin Hall Effect | Physical Effect |
QVHE | Quantum Valley Hall Effect | Physical Effect |
QW | Quantum Well | Device |
SH | Self-Heating | Physical Effect |
SHE | Spin Hall Effect | Physical Effect |
SHPM | Scanning Hall Probe Microscope | Physical Area |
SSS | Soft Skin Sensor | Device |
Appendix C. Condensed Overview of this Survey
References
- Hall, E.H. On a New Action of the Magnet on Electric Currents. Am. J. Math. 1879, 2, 287. [Google Scholar] [CrossRef]
- Leadstone, G.S. The discovery of the Hall effect. Phys. Educ. 1979, 14, 374–379. [Google Scholar] [CrossRef]
- Commemorative Symposium on the Hall Effect and its Applications; Plenum Press: Baltimore, MD, USA, 1979.
- Chien, C.L.; Westgate, C.R. The Hall Effect and its Applications; Springer Science+Business Media, LLC: New York, NY, USA, 1980. [Google Scholar]
- Lorentz, H.A. On Positive and Negative Electrons; American Philosophical Society: Philadelphia, PA, USA, 1906; Volume 45, pp. 103–109. [Google Scholar]
- Nagaosa, N.; Sinova, J.; Onoda, S.; Mc Donald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.H. On the new action of magnetism on a permanent electric current. Phil. Mag. 1880, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.H. On the “Rotational Coefficient” in nickel and cobalt. Phil. Mag. 1881, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Girvin, S.M. The Quantum Hall Effect; Springer: New York, NY, USA, 1987. [Google Scholar]
- Avron, J.; Osadchy, D.; Seiler, R. A topological look at the Quantum Hall effect. Phys. Today 2003, 56, 38–42. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 226801. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Zhang, S.C. Quantum Spin Hall Effect. Phys. Rev. Lett. 2006, 96, 106802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onoda, M.; Nagaosa, N. Quantized Anomalous Hall Effect in Two-Dimensional Ferromagnets: Quantum Hall Effect in Metals. Phys. Rev. Lett. 2003, 90, 206601. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Quantum anomalous Hall effect in Hg1–yMnyTe quantum wells. Phys. Rev. Lett. 2008, 101, 146802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Zhang, W.; Zhang, H.-J.; Zhang, S.-C.; Dai, X.; Fang, Z.B. Quantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Wang, Y.; Xue, Q.K. Quantum anomalous Hall effect. Natl. Sci. Rev. 2014, 1, 38–48. [Google Scholar] [CrossRef]
- Colin, M.H. The Hall Effect in Metals and Alloys; Plenum Press: New York, NY, USA, 1972. [Google Scholar]
- Prange, R.E.; Girvin, S.M. The Quantum Hall Effect, 2nd ed.; Springer: New York, NY, USA, 1990. [Google Scholar]
- Stone, M. Quantum Hall Effect; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1992. [Google Scholar]
- Yoshioka, D. The Quantum Hall Effect; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Pinczuk, A.; Sarma, S.D. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Shrivastava, K.N. Introduction to the Quantum Hall Effect; Nova Science Publishers Inc.: New York, NY, USA, 2002. [Google Scholar]
- Shrivastava, K.N. Quantum Hall Effect: Expressions; Nova Science Publishers Inc.: New York, NY, USA, 2005. [Google Scholar]
- Ezawa, Z.F. Quantum Hall Effects: Field Theoretical Approach and Related Topics, 2nd ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2008. [Google Scholar]
- Ezawa, Z.F. Quantum Hall Effects: Recent Theoretical and Experimental Developments, 3rd ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2013. [Google Scholar]
- Douçot, B.; Duplantier, B.; Pasquier, V.; Rivasseau, V. The Quantum Hall Effect: Poincaré Seminar 2004; Birkhäuser Verlag: Basel, Switzerland, 2005. [Google Scholar]
- Frieß, B. Spin and Charge Ordering in the Quantum Hall Regime; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Popovic, R.S. Hall Effect Devices: Magnetics Sensors and Characterization of Semiconductors; Institute of Physics (IOP) publishing: New York, NY, USA, 1991. [Google Scholar]
- Popovic, R.S. Hall Effect Devices, 2nd ed.; Institute of Physics (IOP) publishing: New York, NY, USA; CRC Press: Boca Raton, FL, USA; Taylor and Francis: Abingdon, UK, 2003. [Google Scholar]
- Ramsden, W. Hall-Effect Sensors: Theory and Applications, 2nd ed.; Elsevier: Burlington, MA, USA, 2006. [Google Scholar]
- Hall Effect Sensing and Application. Micro Switch Sensing and Control. Honeywell Inc.: Freeport, IL, USA. Available online: https://sensing.honeywell.com/ (accessed on 3 March 2020).
- Popović, R.S. Hall-effect devices. Sens. Actuators 1989, 17, 39–53. [Google Scholar] [CrossRef]
- Look, D.C. Review of Hall Effect and Magnetoresistance Measurements in GaAs Materials and Devices. J. Electrochem. Soc. 1990, 137, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Bulman, W.E. Applications of the Hall Effect. Solid State Electron. 1966, 9, 361–372. [Google Scholar] [CrossRef]
- AZO Sensors. An Introduction to Hall Effect Sensors. Azo Sensors Editorial Feature 2019; First written in June 22, 2012, updated in in September 4, 2019. Available online: https://www.azosensors.com/article.aspx?ArticleID=16 (accessed on 3 March 2020).
- Lindemuth, J.; Mizuta, S.-I. Hall measurements on low-mobility materials and high resistivity materials. In Proceedings of the SPIE 8110, Thin Film Solar Technology III, San Diego, CA, USA, 13 September 2011. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, H.T.; Podzorov, V. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors. Phys. Rev. Appl. 2016, 5, 034008. [Google Scholar] [CrossRef]
- AZO Materials. Using AC Hall Effect Method for Low Mobility Materials. Azo Sensors Editorial Feature, 2012. Available online: https://www.azom.com/article.aspx?ArticleID=5992 (accessed on 3 March 2020).
- Ye, J.; Kim, Y.B.; Millis, A.J.; Shraiman, B.I.; Majumdar, P.; Tešanović, Z. Berry Phase Theory of the Anomalous Hall Effect: Application to Colossal Magnetoresistance Manganites. Phys. Rev. Lett. 1999, 83, 3737. [Google Scholar] [CrossRef] [Green Version]
- Oveshnikov, L.N.; Kulbachinskii, V.A.; Davydov, A.B.; Aronzon, B.A.; Rozhansky, I.V.; Averkiev, N.S.; Kugel, K.I.; Tripathi, V. Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. Sci. Rep. 2015, 5, 17158. [Google Scholar] [CrossRef] [Green Version]
- Dyakonov, M.I.; Perel, V.I. Possibility of orientating electron spins with current. Sov. Phys. JETP Lett. 1971, 13, 467. [Google Scholar]
- Dyakonov, M.I.; Perel, V.I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 1971, 35, 459. [Google Scholar] [CrossRef]
- Kato, Y.K.; Myers, R.C.; Gossard, A.C.; Awschalom, D.D. Observation of the Spin Hall Effect in Semiconductors. Science 2004, 306, 1910–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klitzing, K.V.; Dorda, G.; Peper, M. New method for high accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 1980, 45, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Klitzing, K.V. 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect. In The Quantum Hall Effect: Poincaré Seminar 2004; Birkhäuser Verlag: Basel, Switzerland, 2005; pp. 1–21. [Google Scholar]
- Klitzing, K.V. Quantum Hall Effect: Discovery and Application. Annu. Rev. Condens. Matter Phys. 2017, 8, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Tong, D. The Quantum Hall Effect. In TIFR Infosys Lectures; preprint typeset; 2016; Available online: http://qst.theory.tifr.res.in/tifr_lectures/2016-01-28_David_Tong.pdf (accessed on 3 March 2020).
- Novoselov, K.S.; Jiang, Z.; Zhang, Y.; Morozov, S.V.; Stormer, H.L.; Zeitler, U.; Maan, J.C.; Boebinger, G.S.; Kim, P.; Geim, A.K. Room-temperature Quantum Hall in Graphene. Science 2007, 315, 1379. [Google Scholar] [CrossRef] [Green Version]
- Tsui, D.C.; Stormer, H.L.; Gossard, A.C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 1982, 48, 1559. [Google Scholar] [CrossRef] [Green Version]
- Bakun, A.A.; Zakharchenya, B.P.; Rogachev, A.A.; Tkachuk, M.N.; Fleisher, V.G. Observation of a surface photocurrent caused by optical orientation of electrons in a semiconductor. Sov. Phys. JETP Lett. 1984, 40, 1293. [Google Scholar]
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin Hall effect. Rev. Mod. Phys. 2014, 87, 1–48. [Google Scholar] [CrossRef]
- Vardeny, Z.V.; Boehme, C. Inverse spin Hall Effect: A New Way to Get Electricity from Magnetism. University of Utah. Available online: https://phys.org/news/2016-04-inverse-hall-effect-electricity-magnetism.html (accessed on 3 March 2020).
- Sun, D.; Van Schooten, K.J.; Kavand, M.; Malissa, H.; Zhang, C.; Groesbeck, M.; Boehme, C.; Vardeny, Z.V. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin–orbit coupling. Nat. Mater. 2016, 15, 863–869. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.-L.; Zhang, S.-C. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.-L.; Zhang, S.C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-X.; Zhang, S.-C.; Qi, X.-L. The Quantum Anomalous Hall Effect: Theory and Experiment. Annu. Rev. Condens. Matter Phys. 2016, 7, 301–321. [Google Scholar] [CrossRef]
- Weng, H.; Yu, R.; Hu, X.; Dai, X.; Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 2015, 64, 227–282. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ruotolo, A. Photo-induced Hall effect in metals. Sci. Rep. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Ky, V.D. Planar Hall Effect in Ferromagnetic Films. Phys. Status Solidi 1968, 26, 565–569. [Google Scholar] [CrossRef]
- Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, C.; Barrette, A.; Yu, Y.; Semenov, Y.G.; Kim, K.W.; Cao, L.; Gundogdu, K. Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS2. Nano Lett. 2014, 14, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, E.; Ueda, M.; Miyajima, H.; Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 2006, 88, 182509. [Google Scholar] [CrossRef]
- Feng, Y.P.; Shen, L.; Yang, M.; Wang, A.; Zeng, M.; Wu, Q.; Chintalapati, S.; Chang, C.-R. Prospects of spintronics based on 2D materials. WIREs Comput. Mol. Sci. 2017, e1313. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; p. 153. [Google Scholar]
- Oka, T.; Bucciantini, L. Heterodyne Hall Effect in a Two-Dimensional Electron Gas. Phys. Rev. B 2016, 94, 155133. [Google Scholar] [CrossRef] [Green Version]
- Sander, C.; Raz, R.; Ruther, P.; Paul, O.; Kaufmann, T.; Cornils, M.; Vecchi, M.C. Fully symmetric vertical hall devices in CMOS technology. IEEE Sens. 2013, 1–4. [Google Scholar] [CrossRef]
- Comsol Multi-Physics Software Package Website. Available online: https://www.comsol.com/ (accessed on 3 March 2020).
- Karsenty, A.; Mandelbaum, Y. Computer Algebra Challenges in Nanotechnology: Accurate Modeling of nanoscale electro-optic devices using Finite Elements Method. Math. Comput. Sci. 2019, 13, 117–130. [Google Scholar] [CrossRef]
- Karsenty, A.; Mandelbaum, Y. Computer algebra in nanotechnology: Modelling of Nano Electro-Optic Devices using Finite Element Method (FEM). In Proceedings of the ACA 2017 23rd Conference on Applications of Computer Algebra, Session 6: Computer Algebra for Applied Physics, Jerusalem, Israel, 17–21 July 2017; p. 138. [Google Scholar]
- Yatchev, I.; Sen, M.; Balabozov, I.; Kostov, I. Modelling of a Hall Effect-Based Current Sensor with an Open Core Magnetic Concentrator. Sensors 2018, 18, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsenty, A.; Mottes, R. Hall Amplifier Nanoscale Device (HAND): Modeling, Simulations and Feasibility Analysis for THz Sensor. Nanomater. Nano Fabr. Solid State Sens. Sens. Syst. Spec. Issue 2019, 9, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbajit, P.; Junghwan, C. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors. Sensors 2015, 15, 26694–26708. [Google Scholar]
- Meeker, D. FEMM42.exe Software. Available online: http://www.femm.info (accessed on 3 March 2020).
- Chowdhury, A.; Sarjaš, A. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter. Sensors 2016, 16, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matlab Software Package website, MathWorks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 3 March 2020).
- Synopsys TCAD Tools. Available online: http://www.synopsys.com/Tools/TCAD (accessed on 3 March 2020).
- Paun, M.A.; Sallese, J.M.; Kayal, M. Comparative Study on the Performance of Five Different Hall Effect Devices. Sensors 2013, 13, 2093–2112. [Google Scholar] [CrossRef] [Green Version]
- Rosle, M.H.; Wang, Z.; Hirai, S. Geometry Optimisation of a Hall-Effect-Based Soft Fingertip for Estimating Orientation of Thin Rectangular Objects. Sensors 2019, 19, 4056. [Google Scholar] [CrossRef] [Green Version]
- Grosz, A.; Mor, V.; Paperno, E.; Amrusi, S.; Faivinov, I.; Schultz, M.; Klein, L. Planar Hall Effect Sensors with Subnanotesla Resolution. IEEE Magn. Lett. 2013, 4, 6500104. [Google Scholar] [CrossRef]
- Van Dau, F.N.; Schuhl, A.; Childress, J.R.; Sussiau, M. Magnetic Sensors for NanoTesla Detection Using Planar Hall Effect. Sens. Actuators A. Phys. 1995, 53, 256–260. [Google Scholar] [CrossRef]
- Tomo, T.P.; Somlor, S.; Schmitz, A.; Jamone, L.; Huang, W.; Kristanto, H.; Sugano, S. Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor. Sensors 2016, 16, 491. [Google Scholar] [CrossRef]
- Fontana, M.; Salsedo, F.; Bergamasco, M. Novel Magnetic Sensing Approach with Improved Linearity. Sensors 2013, 13, 7618–7632. [Google Scholar] [CrossRef] [PubMed]
- Treutler, C.P.O. Magnetic sensors for automotive applications. Sens. Actuators A Phys. 2001, 91, 2–6. [Google Scholar] [CrossRef]
- Gamazo-Real, J.C.; Vázquez-Sánchez, E.; Gómez-Gil, J. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends. Sensors 2010, 10, 6901–6947. [Google Scholar] [CrossRef] [Green Version]
- Yen, S.-H.; Tang, P.-C.; Lin, Y.-C.; Lin, C.-Y. A Sensorless and Low-Gain Brushless DC Motor Controller Using a Simplified Dynamic Force Compensator for Robot Arm Application. Sensors 2019, 19, 3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewi, S.D.T.; Panatarani, C.; Joni, I.M. Design and development of DC high current sensor using Hall-Effect method. AIP Conf. Proc. 2016, 1712, 030006. [Google Scholar]
- Emerald, P. Non-Intrusive Hall-Effect Current-Sensing Techniques Provide Safe, Reliable Detection and Protection for Power Electronics. Available online: https://www.allegromicro.com/en/insights-and-innovations/technical-documents/hall-effect-sensor-ic-publications/non-intrusive-hall-effect-current-sensing-techniques-for-power-electronics (accessed on 3 March 2020).
- Jeong, U.; Cho, K.-J. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable. Sensors 2016, 16, 961. [Google Scholar] [CrossRef]
- García-Diego, F.-J.; Sánchez-Quinche, A.; Merello, P.; Beltrán, P.; Peris, C. Array of Hall Effect Sensors for Linear Positioning of a Magnet Independently of Its Strength Variation. A Case Study: Monitoring Milk Yield during Milking in Goats. Sensors 2013, 13, 8000–8012. [Google Scholar] [CrossRef] [Green Version]
- Lalnunthari, J.; Thanga, H.H. Dependence of hall effect flow sensor frequency on the attached inlet and outlet pipe size. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Bangalore, India, 5–7 October 2017. [Google Scholar]
- Izci, D.; Dale, C.; Keegan, N.; Hedley, J. The Construction of a Graphene Hall E_ect Magnetometer. IEEE Sens. J. 2018, 18, 9534–9541. [Google Scholar] [CrossRef] [Green Version]
- Girgin, A.; Karalar, T.C. Output offset in silicon Hall effect based magnetic field sensors. Sens. Actuators A Phys. 2019, 288, 177–181. [Google Scholar] [CrossRef]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef] [Green Version]
- Sarbajit, P.; Junghwan, C. Design and Parametric Study of the Magnetic Sensor for Position Detection in Linear Motor Based on Nonlinear Parametric Model Order Reduction. Sensors 2017, 17, 1543. [Google Scholar]
- Yu, H.-Y.; Qin, M.; Meng, N. MEMS Hall effect pressure sensor. Electron. Lett. 2012, 48, 393–394. [Google Scholar] [CrossRef]
- Mandal, N. Design and Analysis of Hall Effect Probe-Based Pressure Transmitter Using Bellows as Sensor. IEEE Trans. Instrum. Meas. 2015, 64, 2548–2556. [Google Scholar]
- Pérez, J.; Seco, F.; Milanés, V.; Jiménez, A.; Díaz, J.C.; De Pedro, T. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals. Sensors 2010, 10, 5872–5887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathirvelan, J.; Varghese, B.; Ponnary, U.A.; Kamar, F.; Jacob. R.T. Hall Effect Sensor Based Portable Tachometer for RPM Measurement. Int. J. Comput. Sci. Eng. Commun. 2014, 2, 100–105. [Google Scholar]
- Mohammadi, A.; Xu, Y.; Tan, Y.; Choong, P.; Oetomo, D. Magnetic-based Soft Tactile Sensors with Deformable Continuous Force Transfer Medium for Resolving Contact Locations in Robotic Grasping and Manipulation. Sensors 2019, 19, 4925. [Google Scholar] [CrossRef] [Green Version]
- De Boer, G.; Raske, N.; Wang, H.; Kow, J.; Alazmani, A.; Ghajari, M.; Culmer, P.; Hewson, R. Design Optimisation of a Magnetic Field Based Soft Tactile Sensor. Sensors 2017, 17, 2539. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.F.; Freitas, V.C.G.; Araújo, R.P.; Maitelli, A.L.; Salazar, A.O. PIG’s Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory. Sensors 2017, 17, 2119. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Wang, L.; Ghanbari, A.; Vardakastani, V.; Kedgley, A.E.; Gardiner, M.D.; Vincent, T.; Culmer, P.; Alazmani, A. Design and Evaluation of Magnetic Hall Effect Tactile Sensors for Use in Sensorized Splints. Sensors 2020, 20, 1123. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; de Boer, G.; Kow, J.; Alazmani, A.; Ghajari, M.; Hewson, R.; Culmer, P. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors. Sensors 2016, 16, 1356. [Google Scholar] [CrossRef] [Green Version]
- Kuntsevich, A.Y.; Shupletsov, A.V.; Nunuparov, M.S. Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array. Phys. Rev. B 2015, 93, 205407. [Google Scholar] [CrossRef] [Green Version]
- Paun, M.; Sallese, J.; Kayal, M. Temperature considerations on Hall Effect sensors current-related sensitivity behavior. In Proceedings of the 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, Spain, 9–12 December 2012. [Google Scholar]
- Braiding, C.R.; Wardle, M. The Hall effect in accretion flows. Mon. Not. R. Astron. Soc. 2012, 427, 3188–3195. [Google Scholar] [CrossRef] [Green Version]
- Kasap, S. Hall Effect in Semiconductors. e-Booklet, 2001; pp. 1–7. Available online: https://www.slideshare.net/herosg2012/the-hall-effect-34796190 (accessed on 3 March 2020).
- Crescentini, M.; Biondi, M.; Romani, A.; Tartagni, M.; Sangiorgi, E. Optimum Design Rules for CMOS Hall Sensors. Sensors 2017, 17, 765. [Google Scholar] [CrossRef] [PubMed]
- Paun, M.-A.; Sallese, J.-M.; Kayal, M. Hall Effect Sensors Design, Integration and Behavior Analysis. J. Sens. Actuator Netw. 2013, 2, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Chow, H.-C.; Chatterjee, P.; Feng, W.-S. A Simple Drain Current Model for MOS Transistors with the Lorentz Force Effect. Sensors 2017, 17, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, R.S.; Randjelovic, Z.; Manic, D. Integrated Hall-effect magnetic sensors. Sens. Actuators A 2001, 91, 46–50. [Google Scholar] [CrossRef]
- Frick, V.; Osberger, L. Low-Frequency Noise Correlation in Current-Mode Magnetic Transducers: The CHOPFET Case. IEEE Trans. Electron Devices 2018, 65, 3401–3407. [Google Scholar] [CrossRef]
- Munter, P.J.A. A low-offset Spinning-current Hall Plate. Sens. Actuators A 1990, A21–A23, 743–746. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Shi, R.; Liu, H.; Wang, Z.; Wang, S.; Peng, L.-M. Batch-fabricated high-performance graphene Hall elements. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D.A.; Levitov, L.S.; Kim, P. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 2007, 99, 166804. [Google Scholar] [CrossRef] [Green Version]
- Sharon, Y.; Khachatryan, B.; Cheskis, D. Towards a low current Hall effect sensor. Sens. Actuators A 2018, 279, 278–283. [Google Scholar] [CrossRef]
- Pajer, R.; Milanoviˇc, M.; Premzel, B.; Rodiˇc, M. MOS-FET as a Current Sensor in Power Electronics Converters. Sensors 2015, 15, 18061–18079. [Google Scholar] [CrossRef]
- Araujo, J.F.D.F.; Reis, A.L.A.; Oliveira, V.C., Jr.; Santos, A.F.; Luz-Lima, C.; Yokoyama, E.; Mendoza, L.A.F.; Pereira, J.M.B.; Bruno, A.C. Characterizing Complex. Mineral. Structures in Thin Sections of Geological Samples with a Scanning Hall Effect Microscope. Sensors 2019, 19, 1636. [Google Scholar] [CrossRef] [Green Version]
- Gheinani, B.T.; Hajghassem, H. Design of an optimal Hall Effect nano sensor for diagnosis and measurement of magnetic field. Adv. Environ. Biol. 2015, 9, 716–720. [Google Scholar]
- Collomb, D.; Li, P.; Bending, S.J. Nanoscale graphene Hall sensors for high-resolution ambient magnetic imaging. Sci. Rep. 2019, 9, 14424. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, A.; Okamoto, A.; Shibasaki, I.; Oral, A. Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy. Microelectron. Eng. 2004, 73–74, 524–528. [Google Scholar] [CrossRef]
- Ramsden, E. Hall-Effect Sensors: Theory and Practice, 2nd ed.; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Diduck, Q.; Margala, M.; Feldman, M.J. A Terahertz Transistor Based on Geometrical Deflection of Ballistic Current. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 20 November 2006; pp. 345–347. [Google Scholar]
- Sherwood, J. Radical Ballistic Computing Chip Bounces Electrons Like Billards. The News of University of Rochester. 16 August 2006. Available online: http://www.jonathanrsherwood.com/2013/09/radical-ballistic-computing-chip.html (accessed on 3 March 2020).
- Bell, T.E. The quest for ballistic action: Avoiding collisions during electron transport to increase switching speeds is the goal of the ultimate transistor. IEEE Spectr. 1986, 23, 36–38. [Google Scholar] [CrossRef]
- Natori, K. Ballistic metal-oxide semiconductor field effect transistor. J. Appl. Phys. 1994, 76, 4879–4890. [Google Scholar] [CrossRef] [Green Version]
- Ross, I.; Thompson, N. An Amplifier based on the Hall Effect. Nature 1955, 175, 518. [Google Scholar] [CrossRef]
- Madelung, O.; Weiss, H. Die elektrischen Eigenschaften von Indiumantimonid II. Zeitschrift für Naturforschung A 1954, 9, 527. [Google Scholar] [CrossRef]
- Saker, E.W.; Cunnell, F.A. Intermetallic Semiconductors. Research 1954, 7, 114. [Google Scholar]
- Sadeghi, M.; Sexton, J.; Liang, C.W.; Missous, M. Highly Sensitive Nanotesla Quantum-Well Hall-Effect Integrated Circuit Using GaAs–InGaAs–AlGaAs 2DEG. IEEE Sens. J. 2015, 15, 1817–1824. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, C.E. Quantum valley Hall effect in widegap semiconductor SiC monolayer. Sci. Rep. 2020, 10, 5044. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 2016, 18, 025012. [Google Scholar] [CrossRef]
- Candini, A.; Gazzadi, G.C.; di Bona, A.; Affronte, M.; Ercolani, D.; Biasiol, G.; Sorba, L. Hall nano-probes fabricated by focused ion beam. Nanotechnology 2016, 17, 2105–2109. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Q.; Xiao, G. Low-Frequency Noise of Magnetic Sensors Based on the Anomalous Hall Effect in Fe–Pt Alloys. Sensors 2019, 19, 3537. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-G.; Chen, J.-H.; Chao, Y.-C.; Chen, P.-L. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas. Sensors 2018, 18, 37. [Google Scholar]
- Kim, S.J.; Torati, S.R.; Talantsev, A.; Jeon, C.Y.; Lee, S.B.; Kim, C.G. Performance Validation of a Planar Hall Resistance Biosensor through Beta-Amyloid Biomarker. Sensors 2020, 20, 434. [Google Scholar] [CrossRef] [Green Version]
- Dankert, A.; Karpiak, B.; Dash, S.P. Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kunetsa, V.P.; Black, W.T.; Mazur, Y.I.; Guzun, D.; Salamo, G.J. Highly sensitive micro-Hall devices based on Al0.12In0.88Sb/InSb heterostructures. J. Appl. Phys. 2005, 98, 14506. [Google Scholar] [CrossRef]
- Ghate, P.B. Electromigration-Induced Failures in VLSI Interconnects. In Proceedings of the 20th International Reliability Physics Symposium, San Diego, NV, USA, 30 March–1 April 1982; pp. 292–299. [Google Scholar]
- Ho, P.S.; Kwok, T. Electromigration in metals. Rep. Prog. Phys. 1989, 52, 301. [Google Scholar] [CrossRef]
- Takacs, D.; Trager, J. Temperature Increase by Self-Heating in VLSI CMOS. In Proceedings of the ESSDERC ’87: 17th European Solid State Device Research Conference, Bologna, Italy, 14–17 September 1987; pp. 729–732. [Google Scholar]
- Fan, Z.; Garcia, J.H.; Cummings, A.W.; Barrios-Vargas, J.E.; Panhans, M.; Harju, A.; Ortmann, F.; Roche, S. Linear Scaling Quantum Transport Methodologies. arXiv 2018, arXiv:1811.07387v1. [Google Scholar]
- Nazin, S.; Shikin, V. Ballistic transport under quantum Hall effect conditions. Phys. B Condens. Matter 2012, 407, 1901–1904. [Google Scholar] [CrossRef]
- Gooth, J.; Borg, M.; Schmid, H.; Bologna, N.; Rossell, M.D.; Wirths, S.; Moselund, K.; Nielsch, K.; Riel, H. Transition to the quantum hall regime in InAs nanowire cross-junctions. Semicond. Sci. Technol. 2019, 34, 035028. [Google Scholar] [CrossRef]
- Nikolajsen, J.R. Edge States and Contacts in the Quantum Hall Effect. Bachelor’s Thesis, Nanoscience, Faculty of Science, University of Copenhagen, Copenhagen, Denmark, 12 June 2013. [Google Scholar]
- Boero, G.; Demierre, M.; Besse, P.-A.; Popovic. R.S. Micro-Hall devices: Performance, technologies and applications. Sens. Actuators A 2003, 106, 314–320. [Google Scholar] [CrossRef]
- Boero, G.; Utke, I.; Bret, T.; Quack, N.; Todorova, M.; Mouaziz, S.; Kejik, P.; Brugger, J.; Popovic, R.S.; Hoffmann, P. Submicrometer Hall devices fabricated by focused electron-beam-induced Deposition. Appl. Phys. Lett. 2005, 86, 042503. [Google Scholar] [CrossRef] [Green Version]
- MarketAndMarket. Hall Effect Current Sensors Market. Available online: https://www.marketsandmarkets.com/Market-Reports/hall-effect-current-sensor-market-201606539.html (accessed on 3 March 2020).
- MarketAndMarket. Nanotechnology in Medical Devices Market. Available online: https://www.marketsandmarkets.com/Market-Reports/nanotechnology-medical-device-market-65048077.html (accessed on 3 March 2020).
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsenty, A. A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices. Sensors 2020, 20, 4163. https://doi.org/10.3390/s20154163
Karsenty A. A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices. Sensors. 2020; 20(15):4163. https://doi.org/10.3390/s20154163
Chicago/Turabian StyleKarsenty, Avi. 2020. "A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices" Sensors 20, no. 15: 4163. https://doi.org/10.3390/s20154163
APA StyleKarsenty, A. (2020). A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices. Sensors, 20(15), 4163. https://doi.org/10.3390/s20154163