Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision
<p>Sequential processing components of the proposed method comprising (<b>A</b>) deep learning (DL) library (i.e., Dlib-ml) for the eye-frame extraction, (<b>B</b>) computer vision algorithm for localising the potential iris and pupil candidates within eye-frames, (<b>C</b>) post-processing for the pupil coordinate measurement. In images, eye’s view is reversed (e.g., the left eye in an image is actually the right eye and vice versa).</p> "> Figure 2
<p>Horizontal convolution (<b>A</b>) and vertical convolution (<b>B</b>) between adaptive size kernel <span class="html-italic">K</span> and white outlined eye frame <span class="html-italic">E</span>.</p> "> Figure 3
<p>Comparison of estimated pupil coordinates (pixel position) using the proposed model, with actual annotated coordinates (BIO-ID dataset) using an R-squared error.</p> "> Figure 4
<p>Pupil coordinates estimations (green color) vs. actual (red) coordinates within the BIO-ID dataset.</p> "> Figure 5
<p>Horizontal and vertical convolution-based pupil coordinates localisation (in randomly selected images from the BIO-ID, GI4E, and Talking-Face datasets) for dynamic conditions such as gaze position, eye colour, intensity, noise interference, eye size, and image resolution.</p> "> Figure 6
<p>The <span class="html-italic">wec</span> measure for different datasets using the proposed method.</p> "> Figure 7
<p>Example of annotation error in the BIO-ID dataset.</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Eye Frame Extraction
2.2. Iris Segmentation and Pupil Localisation
Algorithm 1: Proposed algorithm for iris detection and pupil localisation in an image/video frame. |
Inputs: image/video frame F, a custom-defined kernel frame K Output: Pupil coordinates (Cx, Cy), iris rectangle (top-left; bottom-right) STEP1:
|
3. Experimental Design
3.1. Datasets
3.2. Validation Metrics
4. Results and Discussions
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Monforte, P.H.B.; Araujo, G.M.; De Lima, A.A. Evaluation of a New Kernel-Based Classifier in Eye Pupil Detection. In Proceeding of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 380–385. [Google Scholar]
- Al-Rahayfeh, A.; Faezipour, M. Eye tracking and head movement detection: A state-of-art survey. IEEE J. Transl. Eng. Health Med. 2013, 1. [Google Scholar] [CrossRef]
- Guan, X.F.X.; Peli, E.; Liu, H.; Luo, G. Automatic calibration method for driver’s head orientation in natural driving environment. IEEE Trans. Intell. Transp. Syst. 2013, 14, 303–312. [Google Scholar]
- Horak, K. Fatigue features based on eye tracking for driver inattention system. In Proceeding of the 34th International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 18–20 August 2011; pp. 593–597. [Google Scholar]
- Harischandra, J.; Perera, M.U.S. Intelligent emotion recognition system using brain signals (EEG). In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; pp. 454–459. [Google Scholar]
- Hansen, D.W.; Ji, Q. In the eye of the beholder: A survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 478–500. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.; Crockett, K.; Wasiq, K.; Kindynis, P.; Antoniades, A.; Boultadakis, G. Intelligent Deception Detection through Machine Based Interviewing. In Proceedings of the IEEE International Joint conference on Artificial Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Waheed, H.; Hassan, S.; Aljohani, N.R.; Hardman, J.; Alelyani, S.; Nawaz, R. Predicting academic performance of students with VLE big data using deep learning models. Comput. Hum. Behav. 2020, 104. [Google Scholar] [CrossRef] [Green Version]
- Fasel, I.R.; Fortenberry, B.; Movellan, J.R. A Generative Framework for Real Time Object Detection and Classification. Comput. Vis. Image Underst. 2005, 98, 182210. [Google Scholar] [CrossRef]
- Feng, G.C.; Yuen, P.C. Variance Projection Function and Its Application to Eye Detection for Human Face Recognition. Pattern Recognit. Lett. 1998, 19, 899–906. [Google Scholar] [CrossRef]
- Feng, G.C.; Yuen, P.C. Multi-Cues Eye Detection on Gray Intensity Image. Pattern Recognit. 2001, 34, 1033–1046. [Google Scholar] [CrossRef]
- Kawato, S.; Ohya, J. Two-Step Approach for Real-Time Eye Tracking with a New Filtering Technique. In Proceedings of the SMC 2000 Conference Proceedings 2000 IEEE International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 8–11 October 2000; pp. 1366–1371. [Google Scholar]
- Kawato, S.; Ohya, J. Real-Time Detection of Nodding and Head-Shaking by Directly Detecting and Tracking the BetweenEyes. Proceeding of IEEE Fourth International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 28–30 March 2000; pp. 40–45. [Google Scholar]
- Kawato, S.; Tetsutani, N. Detection and Tracking of Eyes for Gaze-Camera Control. Img. Vis. Comp. 2004, 22, 1031–1038. [Google Scholar] [CrossRef]
- Kawato, S.; Tetsutani, N. Real-Time Detection of Between-the Eyes with a Circle Frequency Filter. In Proceedings of the Asian Conference on Computer Vision ’02, Melbourne, Australia, 23–25 January 2002; pp. 442–447. [Google Scholar]
- Huang, W.M.; Mariani, R. Face Detection and Precise Eyes Location. In Proceedings of the International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000. [Google Scholar]
- Pentland, A.; Moghaddam, B.; Starner, T. View-Based and Modular Eigenspaces for Face Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994. [Google Scholar]
- Huang, J.; Wechsler, H. Eye Detection Using Optimal Wavelet Packets and Radial Basis Functions (RBFs). Int. J. Pattern Recognit. Artif. Intell. 1999, 13, 1009–1025. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.W.; Hansen, J.P.; Nielsen, M.; Johansen, A.S.; Stegmann, M.B. Eye Typing Using Markov and Active Appearance Models. In Proceedings of the IEEE Workshop Applications on Computer Vision, Orlando, FL, USA, 4 December 2003; pp. 132–136. [Google Scholar]
- Hansen, D.W.; Hansen, J.P. Robustifying Eye Interaction. In Proceedings of the Conference on Vision for Human Computer Interaction, New York, NY, USA, 17–22 June 2006; pp. 152–158. [Google Scholar]
- Yiu, Y.H.; Aboulatta, M.; Raiser, T.; Ophey, L.; Flanagin, V.L.; Eulenburg, P.Z.; Ahmadi, S.A. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. J. Neurosci. Methods 2019, 324, 108307. [Google Scholar] [CrossRef]
- Li, D.; Winfield, D.; Parkhurst, D.J. Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; p. 79. [Google Scholar]
- Fuhl, W.; Santini, T.; Kasneci, G.; Kasneci, E. Pupilnet: Convolutional Neural Networks for Robust Pupil Detection. arXiv 2016, arXiv:1601.04902. [Google Scholar]
- Villanueva, A.; Ponz, V.; Sanchez, S.; Ariz, M.; Porta, S.; Cabeza, R. Hybrid method based on topography for robust detection of iris centre and eye corners. ACM Trans. Multimedia Comput. Commun. Appl. 2013, 25, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fuhl, W.; Kübler, T.; Sippel, K.; Rosenstiel, W.; KasneciExcuse, E. Robust pupil detection in real-world scenarios. In Computer Analysis of Images and Patterns; Azzopardi, G., Petkov, N., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 39–51. [Google Scholar]
- Liu, Y.; Hsueh, P.Y.; Lai, J.; Sangin, M.; Nussli, M.A.; Dillenbourg, P. Who is the expert? Analyzing gaze data to predict expertise level in collaborative applications. In Proceedings of the IEEE International Conference on Multimedia and Expo, New York, NY, USA, 28 June–3 July 2019. [Google Scholar]
- Marshall, J.S.P. Identifying cognitive state from eye metrics Aviation. Space Environ. Med. 2007, 78, 165–175. [Google Scholar]
- Henderson, J.M.; Shinkareva, S.V.; Wang, J.; Luke, S.G.; Olejarczyk, J. Predicting cognitive state from eye movements. PLoS ONE 2013, 8, e64937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Król, M.; KrólA, M.E. Novel approach to studying strategic decisions with eye-tracking and machine learning. Judgm. Decis. Mak. 2017, 12, 596–609. [Google Scholar]
- Steichen, B.; Conati, C.; Carenini, G. Inferring visualization task properties, user performance, and user cognitive abilities from eye gaze data. ACM Trans. Interact. Intell. Syst. (TIIS) 2014, 4, 1–29. [Google Scholar] [CrossRef]
- Shojaeizadeh, M.; Djamasbi, S.; Paffenroth, R.C.; Trapp, A.C. Detecting task demand via an eye tracking machine learning system. Decis. Support Syst. 2019, 116, 91–101. [Google Scholar] [CrossRef]
- Krafka, K.; Khosla, A.; Kelnhofer, P.; Kannan, H.; Bhandarkar, S.; Matusik, W.; Torralba, A. Eye tracking for everyone. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Naqvi, R.A.; Arsalan, M.; Batchuluun, G.; Yoon, H.S.; Park, K.R. Deep Learning-based gaze detection system for automobile drivers using a NIR camera sensor. Sensors 2018, 18, 456. [Google Scholar] [CrossRef] [Green Version]
- Vera-Olmos, F.J.; Melero, H.; Malpica, N. DeepEye: Deep convolutional network for pupil detection in real environments. Integr. Comput.-Aided Eng. 2019, 26, 85–95. [Google Scholar] [CrossRef]
- Chen, S.; Liu, C. Eye detection using discriminatory Haar features and a new efficient SVM. Image Vis. Comput. 2015, 33, 68–77. [Google Scholar] [CrossRef]
- Borza, D.; Itu, R.; Danescu, R. In the Eye of the Deceiver: Analyzing Eye Movements as a Cue to Deception. J. Imaging 2018, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Timm, F.; Barth, E. Accurate eye centre localisation by means of gradients. Visapp 2011, 11, 125–130. [Google Scholar]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Valenti, R.; Gevers, T. Accurate eye center location and tracking using isophote curvature. In Proceedings of the IEEE CVPR, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Cristinacce, D.; Cootes, T.; Scott, I. A Multi-Stage Approach to Facial Feature Detection. In British Machine Vision Conference; BMVA Press: Durham, UK, 2004; pp. 231–240. [Google Scholar] [CrossRef] [Green Version]
- Cootes, T. Talking Face Video. Available online: http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html (accessed on 16 October 2019).
- Jesorsky, O.; Kirchberg, K.J.; Frischholz, R.W. Robust face detection using the hausdorff distance. In Proceedings of the International Conference on Audio-and Video-Based Biometric Person Authentication, Halmstad, Sweden, 6–8 June 2001; pp. 90–95. [Google Scholar]
- Ponz, V.; Villanueva, A.; Cabeza, R. Dataset for the evaluation of eye detector for gaze estimation. In Proceedings of the ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 681–684. [Google Scholar]
- Asadifard, M.; Shanbezadeh, J. Automatic adaptive center of pupil detection using face detection and cdf analysis. In Proceedings of the IMECS, Hong Kong, China, 17–19 March 2010; pp. 130–133. [Google Scholar]
- George, A.; Routray, A. Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images. IET Comput. Vis. 2016, 10, 660–669. [Google Scholar] [CrossRef] [Green Version]
- Fusek, R.; Dobeš, P. Pupil Localization Using Self-organizing Migrating Algorithm. In AETA 2018—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering; Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang, D.V., Kim, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 554, pp. 207–216. [Google Scholar] [CrossRef]
Reference | Model | Aims and Feature Used |
---|---|---|
[26] | Hidden Markov model | Use of fixation count, fixation durations to distinguish between expert and novice participants |
[27] | Multi-layer perceptron (MLP) | Use pupil size and point-of-gaze for predicting the users’ behaviours (e.g., word searching, question answering, looking for the most interesting title in a list) |
[28] | Naïve Bayes classifier | Use of fixation duration, mean, and standard deviation to identify various visual activities (e.g., reading, scene search) |
[29] | MLP | Use of pupil dilation, gaze dispersion to classify various tasks on decision making |
[30] | Decision tree, MLP, support vector machines (SVM), linear regression | Use of fixation rate, fixation duration, fixations per trial, saccade amplitude, and relative saccade angles to identify eye movements to predict visualisation tasks |
Dataset | Wec (%) | Bec (%) | ||
---|---|---|---|---|
Error ≤ 0.05 | Error ≤ 0.1 | Error ≤ 0.05 | Error ≤ 0.1 | |
BIO-ID | 94.5 | 100 | 98.34 | 100 |
Talking-Face | 97.10 | 100 | 99.7 | 100 |
GI4E | 95.05 | 100 | 98.71 | 100 |
wec % Accuracy with Varying Error (e) Threshold | ||||
---|---|---|---|---|
Methods | e ≤ 0.05 | e ≤ 0.1 | e ≤ 0.15 | e ≤ 0.2 |
[24] | 81.1 | 94.2 | 96.5 | 98.5 |
[35] | 88.7 | 95.2 | 96.9 | 97.8 |
[36] | 80.9 | 91.4 | 93.5 | 96.1 |
[37] | 82.5 | 93.4 | 95.2 | 96.4 |
[39] | 84.1 | 90.9 | 93.8 | 97.0 |
[40] | 57.2 | 96.0 | 98.1 | 98.2 |
[42] | 38.0 | 78.8 | 84.7 | 87.2 |
[44] | 47.0 | 86.0 | 89.0 | 93.0 |
[45] | 85.8 | 94.3 | 96.6 | 98.1 |
Proposed Model | 94.5 | 100 | 100 | 100 |
Dataset | µ|xa−xe| | µ|ya−ye| | R2_x | R2_y | ED(ca, ce) | %ED(ca, ce) |
---|---|---|---|---|---|---|
BIO-ID | 1.04 | 0.57 | 0.993 | 0.998 | 1.43 | 3.98 |
Talking-Face | 1.23 | 0.97 | 0.990 | 0.956 | 1.96 | 2.49 |
GI4E | 1.32 | 0.71 | 0.996 | 0.999 | 1.70 | 3.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.; Hussain, A.; Kuru, K.; Al-askar, H. Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision. Sensors 2020, 20, 3785. https://doi.org/10.3390/s20133785
Khan W, Hussain A, Kuru K, Al-askar H. Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision. Sensors. 2020; 20(13):3785. https://doi.org/10.3390/s20133785
Chicago/Turabian StyleKhan, Wasiq, Abir Hussain, Kaya Kuru, and Haya Al-askar. 2020. "Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision" Sensors 20, no. 13: 3785. https://doi.org/10.3390/s20133785
APA StyleKhan, W., Hussain, A., Kuru, K., & Al-askar, H. (2020). Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision. Sensors, 20(13), 3785. https://doi.org/10.3390/s20133785