A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network
<p>Methodology of the proposed automatic Pneumonia diagnosis model.</p> "> Figure 2
<p>(<b>a</b>) Ratio of class samples in the dataset and (<b>b</b>) areas (marked) within the ribcage where typically indications of Pneumonia reside [<a href="#B31-sensors-20-03482" class="html-bibr">31</a>].</p> "> Figure 3
<p>Processing of an X-ray image showing (<b>a</b>) chest radiograph collection, (<b>b</b>) conversion of 3(a) to a digital image, (<b>c</b>) elimination of unnecessary black pixels from 3(b), (<b>d</b>) CLAHE enhanced form of 3(c), (<b>e</b>) sharpened form of 3(c), (<b>f</b>) resized version of 3(d), (<b>g</b>) edge enhanced version of 3(e), (<b>h</b>) resized version of 3(g), and features collected from all X-ray images for the (<b>i</b>) first channel, and (<b>j</b>) second channel of CNN.</p> "> Figure 4
<p>Architecture of the proposed multichannel CNN model for Pneumonia classification.</p> "> Figure 5
<p>The (<b>a</b>) accuracy, (<b>b</b>) f-measure, (<b>c</b>) precision, and (<b>d</b>) recall of the performed classification.</p> "> Figure 6
<p>The (<b>a</b>) BCE and (<b>b</b>) KLD curves of the Pneumonia classifications.</p> "> Figure 7
<p>The (<b>a</b>) Matthews Correlation Coefficient (MCC) and (<b>b</b>) Receiver Operating Characteristics (ROC) curve of the performed classification.</p> "> Figure 8
<p>The (<b>a</b>) Confusion Matrix, and (<b>b</b>) t-SNE distribution of the tested samples.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Chest Radiograph Dataset
2.2. Image Cropping
2.3. Image Preprocessing
2.3.1. Data Preparation for the 1st Channel
- Step 1:
- divide the whole image into R disjoint non-overlapping regions, where each region contains pixels.
- Step 2:
- calculate histogram () for each region .
- Step 3:
- clip using a clipping threshold where,Here, is the number of gray level, which is a clip factor, and is the maximum allowable slope.
2.3.2. Data Preparation for the 2nd Channel
- Step 1:
- calculate the blurred image () from the original image () using the function , such that
- Step 2:
- subtract from to obtain the edge enhanced image , such that
- Step 3:
- finally, acquire the sharpened image () through the following operation
- Perform a Gaussian filtering operation through all over the images such that
- Calculate the magnitude and angle of gradient and , such that
- Calculate the threshold image from , based on the threshold value .
- Perform a non-maximal suppression on the edges of image , such that
- Perform a hysteresis liking operation on image such that
2.4. Pneumonia Identification Using Multichannel CNN
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biggers, A. Pneumonia: Symptoms, Causes, Treatment, and More. 2019. Available online: https://www.healthline.com/health/pneumonia (accessed on 20 October 2019).
- Torres, A.; Cillóniz, C. Clinical Management of Bacterial Pneumonia. In Clinical Management of Bacterial Pneumonia; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Pneumonia—NHS. 2019. Available online: https://www.nhs.uk/conditions/pneumonia (accessed on 20 April 2019).
- Pneumonia. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 20 October 2019).
- Unicef. A Child Dies of Pneumonia Every 39 Seconds. 2019. Available online: https://data.unicef.org/topic/child-health/pneumonia/ (accessed on 20 April 2020).
- Chumbita, M.; Cillóniz, C.; Puerta-Alcalde, P.; Moreno-García, E.; Sanjuan, G.; Garcia-Pouton, N.; Soriano, A.; Torres, A.; Garcia-Vidal, C. Can Artificial Intelligence Improve the Management of Pneumonia. J. Clin. Med. 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Sikder, N.; Nahid, A.-A. Heart Condition Monitoring Using Ensemble Technique Based on ECG Signals’ Power Spectrum. In Proceedings of the International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Bhattachargee, C.K.; Sikder, N.; Hasan, M.T.; Nahid, A.-A. Finger Movement Classification Based on Statistical and Frequency Features Extracted from Surface EMG Signals. In Proceedings of the International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, X.W.; Nie, D.; Lu, B.L. Emotional state classification from EEG data using machine learning approach. Neurocomputing 2014, 129, 94–106. [Google Scholar] [CrossRef]
- Sikder, N.; Chowdhury, M.S.; Arif, A.S.M.; Nahid, A.-A. Human Activity Recognition Using Multichannel Convolutional Neural Network. In Proceedings of the 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 560–565. [Google Scholar] [CrossRef]
- Shrivastava, V.K.; Londhe, N.D.; Sonawane, R.S.; Suri, J.S. Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm. Expert Syst. Appl. 2015, 42, 6184–6195. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Taimy, F.R.; Sikder, N.; Nahid, A.-A. Diabetic Retinopathy Classification with a Light Convolutional Neural Network. In Proceedings of the International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 2015, 104, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Lodwick, G.S.; Keats, T.E.; Dorst, J.P. The Coding of Roentgen Images for Computer Analysis as Applied to Lung Cancer. Radiology 1963, 81, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, B.; Hogeweg, L.; Prokop, M. Computer-aided diagnosis in chest radiography: Beyond nodules. Eur. J. Radiol. 2009, 72, 226–230. [Google Scholar] [CrossRef]
- Van Ginneken, B.; Ter Haar Romeny, B.M.; Viergever, M.A. Computer-aided diagnosis in chest radiography: A survey. IEEE Trans. Med Imaging 2001, 20, 1228–1241. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Unrik, C. A new attribute-based learning algorithm GS and a comparison with existing algorithms. J. Comput. Sci. Technol. 1989, 4, 218–228. [Google Scholar] [CrossRef]
- Coppini, G.; Miniati, M.; Paterni, M.; Monti, S.; Ferdeghini, E.M. Computer-aided diagnosis of emphysema in COPD patients: Neural-network-based analysis of lung shape in digital chest radiographs. Med. Eng. Phys. 2007, 29, 76–86. [Google Scholar] [CrossRef]
- Karargyris, A.; Antani, S.; Thoma, G. Segmenting anatomy in chest x-rays for tuberculosis screening. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 7779–7782. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimian, H.; Rijal, O.M.; Noor, N.M.; Yunus, A.; Mahyuddin, A.A. Phase congruency parameter estimation and discrimination ability in detecting lung disease chest radiograph. In Proceedings of the IECBES 2014, IEEE Conference on Biomedical Engineering and Sciences: “Miri, Where Engineering in Medicine and Biology and Humanity Meet”, Sarawak, Malaysia, 8–10 December 2014; pp. 729–734. [Google Scholar] [CrossRef]
- Noor, N.M.; Rijal, O.M.; Yunus, A.; Mahayiddin, A.A.; Peng, G.C.; Ling, O.E.; Abu Bakar, S.A.R. Pair-wise discrimination of some lung diseases using chest radiography. In Proceedings of the IEEE TENSYMP 2014—2014 IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 151–156. [Google Scholar] [CrossRef]
- Abiyev, R.H.; Ma’aitah, M.K.S. Deep Convolutional Neural Networks for Chest Diseases Detection. J. Healthc. Eng. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khobragade, S.; Tiwari, A.; Patil, C.Y.; Narke, V. Automatic detection of major lung diseases using Chest Radiographs and classification by feed-forward artificial neural network. In Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, Delhi, India, 4–6 July 2016. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Huang, Y.; Zhong, Z.; Zheng, Z.; Zheng, L.; Yang, Y. Diagnose like a Radiologist: Attention Guided Convolutional Neural Network for Thorax Disease Classification. arXiv 2018, arXiv:1801.09927. [Google Scholar]
- Singh, R.; Kalra, M.K.; Nitiwarangkul, C.; Patti, J.A.; Homayounieh, F.; Padole, A.; Rao, P.; Putha, P.; Muse, V.V.; Sharma, S.; et al. Deep learning in chest radiography: Detection of findings and presence of change. PLoS ONE 2018, 13, e0204155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, T.B.; Verma, K. Pneumonia Detection on Chest X-ray Using Machine Learning Paradigm. In Proceedings of the Third International Conference on Computer Vision & Image Processing, Jaipur, India, 27–29 September 2019; pp. 21–33. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. A Deep Feature Learning Model for Pneumonia Detection Applying a Combination of mRMR Feature Selection and Machine Learning Models. IRBM 2019. [Google Scholar] [CrossRef]
- Kermany, D.; Zhang, K.; Goldbaum, M. Chest X-Ray Images (Pneumonia) | Kaggle. 2018. Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 3 June 2020).
- Zahavi, G. What Are Lung Opacities? | Kaggle. 2018. Available online: https://www.kaggle.com/zahaviguy/what-are-lung-opacities (accessed on 21 April 2020).
- Johansson, L. Biomarkers: Translational Imaging Research. In Principles of Translational Science in Medicine: From Bench to Bedside, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 189–194. [Google Scholar] [CrossRef]
- Yadav, G.; Maheshwari, S.; Agarwal, A. Contrast limited adaptive histogram equalization based enhancement for real time video system. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014, Delhi, India, 24–27 September 2014; pp. 2392–2397. [Google Scholar] [CrossRef]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. Vlsi Signal Process. Syst. Signal. Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Polesel, A.; Ramponi, G.; Mathews, V.J. Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 2000, 9, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Hackeling, G. Mastering Machine Learning with Scikit-Learn. Packt Publishing Ltd. 2014. Available online: https://www.packtpub.com/big-data-and-business-intelligence/mastering-machine-learning-scikit-learn (accessed on 30 May 2019).
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Xu, S.; Wu, H.; Bie, R. CXNet-m1: Anomaly Detection on Chest X-Rays with Image-Based Deep Learning. IEEE Access 2019, 7, 4466–4477. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yanet, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.; Zhang, K.; Goldbaum, M. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. Mendeley Data 2018. [Google Scholar] [CrossRef]
- Stephen, O.; Sain, M.; Maduh, U.J.; Jeong, D.U. An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. J. Healthc. Eng. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Kumar, D.; Mittal, M.; Saba, T.; Abunadi, I.; Rehman, A.; Roy, S. Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors 2020, 20, 1068. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damasevicius, R.; de Albuquerque, V.H.C. A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Appl. Sci. 2020, 10, 559. [Google Scholar] [CrossRef] [Green Version]
Image Dimension | Annotation | Accuracy% | Precision% | Recall% | BCE | KLD | MCC | F1-Score% |
---|---|---|---|---|---|---|---|---|
64 × 64 × 3 | TS64 × 64 | 93.22 | 93.94 | 92.99 | 0.99 | 56.68 | 00.87 | 93.46 |
128 × 128 × 3 | TS128 × 128 | 95.28 | 95.37 | 94.78 | 0.72 | 37.83 | 00.91 | 95.07 |
256 × 256 × 3 | TS256 × 256 | 97.92 | 98.38 | 97.47 | 0.46 | 29.77 | 00.94 | 97.91 |
References | Dataset | Class | Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|---|---|
[23] | [25] | 12 | CNN | 92.40 | |||
[40] | [25] | 2 | CNN | 93.63 | 93.9 | 93.00 | 92.70 |
[41] | [42] | 4 | CNN | 92.80 | 87.2 | 93.20 | 90.10 |
[43] | [30] | 2 | CNN | 93.73 | |||
[44] | [30] | 2 | CNN | 96.36 | |||
[45] | [30] | 2 | CNN | 96.39 | 93.28 | 99.62 | 96.35 |
This Work | [30] | 2 | CNN | 97.92 | 98.38 | 97.47 | 97.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahid, A.-A.; Sikder, N.; Bairagi, A.K.; Razzaque, M.A.; Masud, M.; Z. Kouzani, A.; Mahmud, M.A.P. A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors 2020, 20, 3482. https://doi.org/10.3390/s20123482
Nahid A-A, Sikder N, Bairagi AK, Razzaque MA, Masud M, Z. Kouzani A, Mahmud MAP. A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors. 2020; 20(12):3482. https://doi.org/10.3390/s20123482
Chicago/Turabian StyleNahid, Abdullah-Al, Niloy Sikder, Anupam Kumar Bairagi, Md. Abdur Razzaque, Mehedi Masud, Abbas Z. Kouzani, and M. A. Parvez Mahmud. 2020. "A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network" Sensors 20, no. 12: 3482. https://doi.org/10.3390/s20123482
APA StyleNahid, A. -A., Sikder, N., Bairagi, A. K., Razzaque, M. A., Masud, M., Z. Kouzani, A., & Mahmud, M. A. P. (2020). A Novel Method to Identify Pneumonia through Analyzing Chest Radiographs Employing a Multichannel Convolutional Neural Network. Sensors, 20(12), 3482. https://doi.org/10.3390/s20123482