Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results
<p>The overall structure of the MAI system, which is mainly divided into three parts: the transmitting channel, multi-channel receiver and receiving antenna array.</p> "> Figure 2
<p>The transmission channel of MAI system which is mainly composed of the excitation source and power amplifier.</p> "> Figure 3
<p>The block diagram of the power amplifier unit. 4 × 600 W linear amplifier can provide 2 kW transmission power.</p> "> Figure 4
<p>The specific waveform of the radar transmitting signal. Driven by the system clock <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>l</mi> <mi>k</mi> </mrow> </semantics></math>, the transmitting waveform <math display="inline"><semantics> <mrow> <mi>W</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> is generated according to the code sequence <math display="inline"><semantics> <mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and transmitting pulse <math display="inline"><semantics> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>. The positive and complement codes are transmitted alternately.</p> "> Figure 5
<p>Normalized ambiguity function of complementary code: (<b>a</b>) Normalized ambiguity function; (<b>b</b>) Normalized ambiguity cut for Delay = 0 μs and Frequency = 0 kHz. It has a “pushpin type”ambiguity. And the section of 0 kHz has only one main lobe with no side lobe. Thus, it is very suitable for soft target sounding.</p> "> Figure 6
<p>The circuit design of the analog channel. Between the levels, several “π” networks are employed to match the impedance and adjust the gain consistency of each channel.</p> "> Figure 7
<p>The structure of the DDC module. Digital mixing and filtering are implemented in FPGA, which generate the baseband signals and reduce the data rate.</p> "> Figure 8
<p>Erection image of 75 m three-wire transmitting antenna. It is a linear polarized dipole with the feed point in the center.</p> "> Figure 9
<p>The antenna erection form: (<b>a</b>) The array structure, with a positive triangle structure; (<b>b</b>) The erection form of each vertex. The two antennas are erected in an orthogonal way; (<b>c</b>) The schematic erection form of a single receiving antenna with the feed point in the center. Due to the influence of gravity, the antenna cannot be straightened completely. The distance between the two poles is 50 m; (<b>d</b>) The structure image of the Barker & Williamson Broadband Folded Dipole Antennas. The dotted line indicates the erection scheme type of the inverted “V”, which is not adopted in this paper.</p> "> Figure 10
<p>The pattern of the antenna array with the impedance of 50 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>: (<b>a</b>) O-mode wave; (<b>b</b>) X-mode wave. No matter for O or X-mode wave, the antenna array has a high gain and vertical upward main lobe.</p> "> Figure 11
<p>The pattern of the signal antenna in HF band with the impedance of 50 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>: (<b>a</b>) 3 MHz; (<b>b</b>) 5 MHz; (<b>c</b>) 15 MHz; (<b>d</b>) 20 MHz. Although the main lobe splits as the frequency increases, it is not important for ionospheric sounding. The gain of full working band is more than 4 dB and the pointing direction is always upward.</p> "> Figure 11 Cont.
<p>The pattern of the signal antenna in HF band with the impedance of 50 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>: (<b>a</b>) 3 MHz; (<b>b</b>) 5 MHz; (<b>c</b>) 15 MHz; (<b>d</b>) 20 MHz. Although the main lobe splits as the frequency increases, it is not important for ionospheric sounding. The gain of full working band is more than 4 dB and the pointing direction is always upward.</p> "> Figure 12
<p>The finished product of the prototype: (<b>a</b>) 2 kW power amplifier units. Three units together provide 6 kW for transmitting. (<b>b</b>) The transmitting excitation source and multi-channel receiver. The aluminum alloy frames are shielded between the modules.</p> "> Figure 13
<p>SNR map for mesospheric sounding at the local time of 00:08−01:08, 1 January 2018.</p> "> Figure 14
<p>Wind field inversion results by FCA at the local time of 00:08-01:08, 1 January, 2018: (<b>a</b>) the temporal and spatial characteristics of wind field. Beyond 75−83 km, it is marked in gray for the less of accuracy (<b>b</b>) the zonal profile at 00:50; (<b>c</b>) the meridional profile at 00:50. Beyond 75−83 km, they are also marked as dashed lines.</p> "> Figure 15
<p>(<b>a</b>) the electron density inversion results of DAE algorithm at the local time of 11:00−12:00, 8 January 2018. (<b>b</b>) shows the signal power of X-wave mode and O-wave mode at the local time of 11:15, 8 January 2018.</p> "> Figure 16
<p>An example of vertical sounding ionogram at the local time of 17:50, 5 January 2018.</p> "> Figure 17
<p>Electron density profile at the local time of 17:50, 5 January 2018.</p> ">
Abstract
:1. Introduction
2. System Description
2.1. Transmission Channel
2.2. Sounding Waveform
2.3. Multichannel Receiver
2.4. Miniaturized Antenna
3. Prototype Device
4. Typical Experimental Results
4.1. Mesospheric Sounding
4.2. Ionospheric Sounding
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wan, W.; Xu, J. Recent investigation on the coupling between the ionosphere and upper atmosphere. Sci. China Earth Sci. 2014, 5757, 1995–2012. [Google Scholar] [CrossRef]
- Gardner, F.F.; Pawsey, J.L. Study of the ionospheric D-region using partial reflections. J. Atmos. Terr. Phys. 1953, 33, 321–344. [Google Scholar] [CrossRef]
- Igarashi, K.; Murayama, Y.; Nagayama, M. D-region electron density measurements by MF radar in the middle and high latitudes. Adv. Space Res. 2000, 25, 25–32. [Google Scholar] [CrossRef]
- Mitra, S.N. A radio method of measuring winds in the ionosphere. Proc. IEE-Part III Radio Commun. Eng. 1949, 96, 441–446. [Google Scholar] [CrossRef]
- Briggs, B.H.; Phillips, G.J.; Shinn, D.H. The Analysis of Observations on Spaced Receivers of the Fading of Radio Signals. Proc. Phys. Soc. 1950, 63, 106. [Google Scholar] [CrossRef]
- Sürücü, F.; Franke, P.M.; Kudeki, E. On the use of software beam synthesis in multiple-receiver MF radar wind estimation. Radio Sci. 1992, 27, 775–782. [Google Scholar] [CrossRef]
- Briggs, B.H.; Vincent, R.A. Spaced-antenna analysis in the frequency domain. Radio Sci. 2016, 27, 117–129. [Google Scholar] [CrossRef]
- Hocking, W.K. The spaced antenna drift method. Middle Atmosphere Program. In Handbook for MAP; Createspace: Charleston, SC, USA, 1983. [Google Scholar]
- Fraser, G.J. The Measurement of Atmospheric Winds at Altitudes of 64–120 km Using Ground-Based Radio Equipment. J. Atmos. Sci. 2010, 22, 217–218. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Fraser, G.J. Seasonal variation of southern hemisphere mid-latitude winds at altitudes of 70–100 km. J. Atmos. Terr. Phys. 1968, 30, 707–719. [Google Scholar] [CrossRef]
- Fraser, G.J.; Kochanski, A. Ionospheric drifts from 64–108 km altitudes at Birdlings Flat. Ann. Geophys. 1970, 26, 675–687. [Google Scholar]
- Gregory, J.B.; Manson, A.H. Winds and Wave Motions to 110 km at Mid-Latitudes. II. Mean Winds at 52 ° N, 1969–1973. J. Atmos. Sci. 1975, 32, 1667–1675. [Google Scholar] [CrossRef]
- Manson, A.H.; Meek, C.E.; Teitelbaum, H.; Vial, F.; Schminder, R.; Kürschner, D.; Smith, M.J.; Fraser, G.J.; Clark, R.R. Climatologies of semi-diurnal and diurnal tides in the middle atmosphere (70–110 km) at middle latitudes (40–55°). J. Atmos. Terr. Phys. 1989, 51, 579–593. [Google Scholar] [CrossRef]
- Igarashi, K.; Murayama, Y.; Hocke, K.; Yamazaki, R.; Kunitake, M.; Nagayama, M.; Nishimuta, I. Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude. Earth Planets Space 1999, 51, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Reid, I.M.; Vandepeer, B.G.W.; Dillon, S.C.; Fuller, B.M. The new Adelaide medium frequency Doppler radar. Radio Sci. 2016, 30, 1177–1189. [Google Scholar] [CrossRef]
- Placke, M.; Hoffmann, P.; Latteck, R.; Rapp, M. Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J. Geophys. Res. Space Phys. 2014, 120, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Renkwitz, T.; Tsutsumi, M.; Laskar, F.I.; Chau, J.L.; Latteck, R. On the Role of Anisotropic MF/HF Scattering in Mesospheric Wind Estimation. Earth Planets Space 2018, 70, 158. [Google Scholar] [CrossRef]
- Fengqin, L.I. Mesospheric MF radar in Wuhan and its preliminary observation results. Chin. J. Space Sci. 2002, 22, 65–71. [Google Scholar]
- Zhao, Z.; Yao, M.; Deng, X.; Yuan, K.; Li, H.; Wang, Z. A Novel Ionospheric Sounding Radar Based on USRP. IEEE Geosci. Remote Sens. Lett. 2017, 99, 1–5. [Google Scholar] [CrossRef]
- Pitteway, M.L.V.; Wright, J.W. Toward an optimum receiving array and pulse-set for the dynasonde. Radio Sci. 1992, 27, 481–490. [Google Scholar] [CrossRef]
- DPS-4D Operation Manual-version 1.2.6. Available online: http://digisonde.com/dps-4dmanual.html.28-01-2009 (accessed on 6 July 2019).
- Shi, S.; Yang, G.; Jiang, C.; Zhang, Y.; Zhao, Z. Wuhan Ionospheric Oblique Backscattering Sounding System and Its Applications—A Review. Sensors 2017, 17, 1430. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Chen, G.; Zhao, Z.Y.; Wang, Y.; Bai, B. A novel low-power multifunctional ionospheric sounding system. IEEE Trans. Instrum. Meas. 2012, 61, 1252–1259. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, Z.; Zhou, C.; Zhang, Y.; Chen, G.; Hu, Y. A New Type Multi-Function Ionospheric Sounding System. In Proceedings of the XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar]
- Liu, T.; Hu, Y.; Yang, G.; Jiang, C.; Lan, T.; Zhao, Z.; Ni, B. A Novel Ionospheric Sounding Network Based on Complete Complementary Code and its Application. Sensors 2019, 19, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, M.; Suzuki, T.; Maeda, J.; Heki, K. Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR. Earth Planets Space 2017, 69, 175. [Google Scholar] [CrossRef]
- Nina, A.; Nico, G.; Odalović, O.; Čadež, V.M.; Drakul, M.T.; Radovanović, M.; Popović, L.Č. GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares. Geosci. Remote Sens. Lett. 2019, 1–5. [Google Scholar] [CrossRef]
- Cushley, A.C.; Noel, J.M.A. Ionospheric Sounding Opportunities Using Signal Data From Preexisting Amateur Radio And Other Networks. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Progressive Wave Antenna. In Antenna Theory and Design, 2nd ed.; Zhu, S., An, T., Eds.; The People’s Posts and Telecommunications Press: Beijing, China, 2006; pp. 211–251. [Google Scholar]
- Galay, M.J.E. Compelentary sequences of length 26. IEEE Trans. Info. Theory 1961, 7, 82–87. [Google Scholar]
- Ge, W. Radar Receiver Technology; Publishing House of Electronics Industry: Beijing, China, 2006. [Google Scholar]
- Vandepeer, B.G.W.; Reid, I.M. Some preliminary results obtained with the new Adelaide MF Doppler radar. Radio Sci. 1995, 30, 1191–1203. [Google Scholar] [CrossRef]
- Garcia, A.; Meyer-Baese, U.; Taylor, F. Pipelined Hogenauer CIC filters using field-programmable logic and residue number system. IEEE Int. Conf. Acoust. 1998, 5, 3085–3088. [Google Scholar]
- Broadband Freq Agile HF Folded Dipole Antenna Camouflaged for Tactical Use. Available online: http://www.bwantennas.com (accessed on 12 April 2020).
- Belrose, J.S.; Burke, M.J. Study of the lower ionosphere using partial reflection: 1. Experimental technique and method of analysis. J. Geophys. Res. 1964, 69, 2799–2818. [Google Scholar] [CrossRef]
- Zhao, J. Resarch on General Design and Key Technologies of Wuhan MF Radar. Ph.D. Thesis, Wuhan University, Wuhan, China, 2009. [Google Scholar]
- Hara, E.H. Approximations to the semiconductor integrals C, p (x) and D p (x) for use with, the Generalized Appleton-Hartree Magnetoionic Formulas. J. Geophys. Res. 1963, 68, 4388–4389. [Google Scholar] [CrossRef]
- Croft, T.A.; Hoogasian, H. Exact ray calculations in a quasi-parabolic ionosphere. Radio Sci. 1969, 3, 69–74. [Google Scholar] [CrossRef]
- Dyson, P.L.; Bennett, J.A. A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies. J. Atmos. Terr. Phys. 1988, 50, 251–262. [Google Scholar] [CrossRef]
- Norman, R.; Engineering, S.O. An Inversion Technique for Obtaining Quasi-Parabolic Layer Parameters from VI Ionograms. Proc. IEEE Radar Conf. 2003, 363–367. [Google Scholar] [CrossRef]
- Norman, R.J. Backscatter ionogram inversion. Proc. IEEE Radar Conf. 2003, 368–374. [Google Scholar] [CrossRef]
- Chapman, S. The absorption and dissociative or ionising effect of monochromatic nradiation in an atmosphere on a rotating earth. Proc. Phys. Soc. 1931, 43, 26–45. [Google Scholar] [CrossRef]
Technical Indicators | Values |
---|---|
System function | Mesospheric/Ionospheric sounding |
Working frequency | Mesospheric: 1.98 MHz/ Ionospheric: 2−20 MHz |
Sounding range | Mesospheric: 70−100 km/ Ionospheric: 100−800 km |
Peak power | Mesospheric: 6 Kw/ Ionospheric: ≤1 Kw |
Waveform | Interpulse coding waveform |
Duty cycle | 5% |
Height resolution | 1.98 km |
Time resolution | Mesospheric: ≤2 min/ Ionospheric: ≤4 min |
Sounding mode | Mesospheric: Fixed Frequency/Ionospheric: Frequency sweeping |
Sounding Direction | Vertical upward |
Sequence | Values |
---|---|
The positive sequence A () | 1101_0001_0111_1011 |
The complement sequence B () | 0010_1110_0111_1011 |
Parameters | H = 2 m | H = 3 m | H = 4 m | H = 5 m | H = 6 m |
---|---|---|---|---|---|
Directivity Gain (dB) | 8.5 | 8.51 | 8.52 | 8.54 | 8.55 |
Beamwidth (°) | 67.17 | 67.28 | 67.19 | 67.22 | 67.27 |
VSWR. | 1.15 | 1.12 | 1.21 | 1.28 | 1.3 |
Parameters | H = 4 m | H = 8 m | H = 12 m | H = 20 m | H = 25 m |
---|---|---|---|---|---|
Directivity gain(dB) | 7.76 | 7.99 | 8.24 | 8.33 | 8.37 |
Beamwidth(°) | 70 | 70.26 | 70.92 | 72.86 | 74.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Yang, G.; Zhao, Z.; Liu, Y.; Zhou, C.; Jiang, C.; Ni, B.; Hu, Y.; Zhu, P. Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results. Sensors 2020, 20, 2664. https://doi.org/10.3390/s20092664
Liu T, Yang G, Zhao Z, Liu Y, Zhou C, Jiang C, Ni B, Hu Y, Zhu P. Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results. Sensors. 2020; 20(9):2664. https://doi.org/10.3390/s20092664
Chicago/Turabian StyleLiu, Tongxin, Guobin Yang, Zhengyu Zhao, Yi Liu, Chen Zhou, Chunhua Jiang, Binbin Ni, Yaogai Hu, and Peng Zhu. 2020. "Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results" Sensors 20, no. 9: 2664. https://doi.org/10.3390/s20092664
APA StyleLiu, T., Yang, G., Zhao, Z., Liu, Y., Zhou, C., Jiang, C., Ni, B., Hu, Y., & Zhu, P. (2020). Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results. Sensors, 20(9), 2664. https://doi.org/10.3390/s20092664