Characterization of Noise Level Inside a Vehicle under Different Conditions
<p>Map of Natal with traffic signs.</p> "> Figure 2
<p>Top view of the car cabin showing the microphone as a red square [<a href="#B52-sensors-20-02471" class="html-bibr">52</a>].</p> "> Figure 3
<p>The measurement setup.</p> "> Figure 4
<p>Histogram of measured noise power levels.</p> "> Figure 5
<p>Box plot of noise power data divided by traffic categories.</p> "> Figure 6
<p>Histogram of noise power data with distribution curves for each traffic category.</p> "> Figure 7
<p>Traffic data and predictions using the linear model. Colors represent the real traffic category of the predictions.</p> "> Figure 8
<p>Box plot of data divided by presence of rain.</p> "> Figure 9
<p>Data grouped by presence of rain and predictions using the logistic model.</p> "> Figure 10
<p>Box plot of data divided by the state of the car windows.</p> "> Figure 11
<p>Data grouped by position of windows and predictions using the logistic model.</p> "> Figure 12
<p>Histogram of the maximum speed of the car during the measurements.</p> "> Figure 13
<p>Speed data and predictions using the linear model.</p> "> Figure 14
<p>Correlation matrix of the dataset.</p> "> Figure 15
<p>Speed data grouped by traffic conditions and predictions using the linear mode with all explanatory variables.</p> ">
Abstract
:1. Introduction
- Acoustic measurements were collected in several conditions (weather, car windows position, car speed, and traffic level).
- The data collected herein, including information on the conditions and location of each measurement, are freely available [44] and can help researchers in different purposes.
- Statistical evaluation of the different conditions in relation to noise levels was performed.
2. Methods
2.1. Environment Variables
2.2. Statistical Methods
3. Measurement Setup
4. Results and Discussions
4.1. Measurements Presentation
4.2. Traffic Analysis
4.3. Rain Analysis
4.4. Car Windows Analysis
4.5. Speed Analysis
4.6. Multiple Variable Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Almalkawi, I.T.; Guerrero Zapata, M.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless Multimedia Sensor Networks: Current Trends and Future Directions. Sensors 2010, 10, 6662–6717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ma, J.J.; Ding, L.; Bi, D.W. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks. Sensors 2007, 7, 2779–2807. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Bishop, D.W.; Ding, L.; Wang, S. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks. Sensors 2007, 7, 2201–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennehag, U.; Forsstrom, S.; Fiordigigli, F. Low Delay Video Streaming on the Internet of Things Using Raspberry Pi. Electronics 2016, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT Solution for Smart Cities’ Pollution Monitoring and the Security Challenges. Sensors 2019, 19, 3401. [Google Scholar] [CrossRef] [Green Version]
- Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Font, V.; Garrigues, C.; Rifà-Pous, H. Attack Classification Schema for Smart City WSNs. Sensors 2017, 17, 771. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, A.; Galván-Tejada, C.; Galván-Tejada, J.; Celaya-Padilla, J.; Gamboa-Rosales, H.; Velasco-Elizondo, P.; Cárdenas-Vargas, R. A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks. Sensors 2017, 17, 2688. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Han, Z.; Fang, L.; Ma, Z. Tell the Device Password: Smart Device Wi-Fi Connection Based on Audio Waves. Sensors 2019, 19, 618. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, T.; Jameel, A.; Stumpfle, M.; Haddadi, A. Hybrid in-car speech recognition for mobile multimedia applications. In Proceedings of the 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363), Houston, TX, USA, 16–20 May 1999; Volume 3, pp. 2009–2013. [Google Scholar] [CrossRef]
- Higuchi, M.; Shinohara, S.; Nakamura, M.; Mitsuyoshi, S.; Tokuno, S.; Omiya, Y.; Hagiwara, N.; Takano, T. An effect of noise on mental health indicator using voice. In Proceedings of the 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 24–26 November 2017; p. 202. [Google Scholar] [CrossRef]
- Khan, S.; Akmal, H.; Ali, I.; Naeem, N. Efficient and unique learning of in-car voice control for engineering education. In Proceedings of the 2017 International Multi-Topic Conference (INMIC), Lahore, Pakistan, 24–26 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tremoulet, P.D.; Seacrist, T.; Ward McIntosh, C.; Loeb, H.; DiPietro, A.; Tushak, S. Transporting Children in Autonomous Vehicles: An Exploratory Study. Hum. Factors J. Hum. Factors Ergon. Soc. 2019. [Google Scholar] [CrossRef]
- Chen, S.C. Multimedia for Autonomous Driving. IEEE MultiMedia 2019, 26, 5–8. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.E.; Shev, A.; Paksarian, D.; Merikangas, K.R.; Mennitt, D.J.; James, P.; Casey, J.A. Environmental noise and sleep and mental health outcomes in a nationally representative sample of urban US adolescents. Environ. Epidemiol. 2019, 3, e056. [Google Scholar] [CrossRef] [PubMed]
- Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014, 131, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Marco, C.; Elena, A.; Francesco, B.; Luca, F.; Gaetano, L.; Liliana, C. Chapter Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 157–171. [Google Scholar] [CrossRef]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient Noise and Cognitive Processes among Primary Schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Ketzel, M.; Gammelmark, A.; Overvad, K.; Olsen, A.; Sørensen, M. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction—A Danish cohort study. Environ. Res. 2017, 156, 80–86. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Jensen, S.S.; Tjønneland, A.; Sørensen, M. Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort. Environ. Res. 2018, 160, 292–297. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Feng, T.; Ju, J.; Wang, X. Acoustic behavior prediction for low-frequency sound quality based on finite element method and artificial neural network. Appl. Acoust. 2017, 122, 62–71. [Google Scholar] [CrossRef]
- Pietila, G.; Lim, T.C. Intelligent systems approaches to product sound quality evaluations—A review. Appl. Acoust. 2012, 73, 987–1002. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, G.; Xing, Y. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network. Mech. Syst. Signal Process. 2014, 45, 255–266. [Google Scholar] [CrossRef]
- Huang, H.B.; Li, R.X.; Huang, X.R.; Yang, M.L.; Ding, W.P. Sound quality evaluation of vehicle suspension shock absorber rattling noise based on the Wigner–Ville distribution. Appl. Acoust. 2015, 100, 18–25. [Google Scholar] [CrossRef]
- Jung, W.; Elliott, S.J.; Cheer, J. Local active control of road noise inside a vehicle. Mech. Syst. Signal Process. 2019, 121, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Pizzo, A.D.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- Praticò, F.G.; Anfosso-Lédée, F. Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia Soc. Behav. Sci. 2012, 53, 203–212, SIIV-5th International Congress—Sustainability of Road Infrastructures 2012. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Bianco, F.; Chetoni, M. Performance Assessment of Low-Noise Road Surfaces in the Leopoldo Project: Comparison and Validation of Different Measurement Methods. Coatings 2015, 5, 3–25. [Google Scholar] [CrossRef]
- Shin, T.J.; Park, D.C.; Lee, S.K. Objective evaluation of door-closing sound quality based on physiological acoustics. Int. J. Automot. Technol. 2013, 14, 133–141. [Google Scholar] [CrossRef]
- Parizet, E.; Guyader, E.; Nosulenko, V. Analysis of car door closing sound quality. Appl. Acoust. 2008, 69, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Qiao, F.; Yu, L.; Shi, J. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation. J. Air Waste Manag. Assoc. 2018, 68, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Huang, X.R.; Yang, M.L.; Lim, T.C.; Ding, W.P. Identification of vehicle interior noise sources based on wavelet transform and partial coherence analysis. Mech. Syst. Signal Process. 2018, 109, 247–267. [Google Scholar] [CrossRef]
- Yoshida, J.; Inoue, A. Road & wind noise contribution separation using only interior noise having multiple sound sources—Accuracy improvement and permutation solution-. Mech. Eng. J. 2017, 4, 17-00165. [Google Scholar] [CrossRef] [Green Version]
- Talay, E.; Altinisik, A. The effect of door structural stiffness and flexural components to the interior wind noise at elevated vehicle speeds. Appl. Acoust. 2019, 148, 86–96. [Google Scholar] [CrossRef]
- Cai, M.; Zhong, S.; Wang, H.; Chen, Y.; Zeng, W. Study of the traffic noise source intensity emission model and the frequency characteristics for a wet asphalt road. Appl. Acoust. 2017, 123, 55–63. [Google Scholar] [CrossRef]
- Alonso, J.; López, J.; Pavón, I.; Recuero, M.; Asensio, C.; Arcas, G.; Bravo, A. On-board wet road surface identification using tyre/road noise and Support Vector Machines. Appl. Acoust. 2014, 76, 407–415. [Google Scholar] [CrossRef]
- Kanarachos, S.; Kalliris, M.; Blundell, M.; Kotsakis, R. Speed-dependent wet road surface detection using acoustic measurements, octave-band frequency analysis and machine learning algorithms. In Proceedings of the ISMA Conference on Noise and Vibration Engineering, Leuven, Belgium, 17–19 September 2018. [Google Scholar] [CrossRef]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Volandri, G.; Di Puccio, F.; Forte, P.; Mattei, L. Psychoacoustic analysis of power windows sounds: Correlation between subjective and objective evaluations. Appl. Acoust. 2018, 134, 160–170. [Google Scholar] [CrossRef]
- Pena, D.; Sousa, V.; Pena, L.; de Lucena Flor, D. Database of Acoustic Noise Power Levels in a Vehicle Interior under Different Conditions. 2019. Available online: https://figshare.com/articles/Noise_power_level_in_the_vehicle_interior_under_different_conditions/1370885 (accessed on 24 February 2020). [CrossRef]
- Pokorný, P. Determining Traffic Levels in Cities Using Google Maps. In Proceedings of the 2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Corfu, Greece, 24–27 August 2017; pp. 144–147. [Google Scholar] [CrossRef]
- Přibil, J.; Přibilová, A.; Frollo, I. Analysis of the Influence of Different Settings of Scan Sequence Parameters on Vibration and Noise Generated in the Open-Air MRI Scanning Area. Sensors 2019, 19, 4198. [Google Scholar] [CrossRef] [Green Version]
- Boudraa, A.O.; Salzenstein, F. Teager–Kaiser energy methods for signal and image analysis: A review. Digit. Signal Process. 2018, 78, 338–375. [Google Scholar] [CrossRef]
- Stigler, S.M. Gauss and the Invention of Least Squares. Ann. Stat. 1981, 9, 465–474. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis. Am. Stat. 2000, 54, 17–24. [Google Scholar] [CrossRef]
- Pena, D.; Lima, C.; Dória, M.; Pena, L.; Martins, A.; Sousa, V., Jr. Acoustic Impulsive Noise Based on Non-Gaussian Models: An Experimental Evaluation. Sensors 2019, 19, 2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Image of a Car Seen from Above. 2019. Available online: https://pngimage.net/carros-vistos-desde-arriba-png-4/ (accessed on 20 October 2019).
Variable | Possible Conditions | Constraints |
---|---|---|
Window Positions | Open; Closed | Open: only with no rain. |
Rain | Yes; No | Yes: only with closed window. |
Traffic | Black; Red; Orange; Green | Each traffic has a range of speed (see Table 2). |
Speed | 0–80 km/h | - |
Traffic Condition (Color) | Speed Interval | Description |
---|---|---|
Black | 0 | Indicates extremely slow or stopped traffic. |
Red | <20 km/h | Highway traffic is moving slow and could indicate an accident or traffic jam on that route. |
Orange | >20 km/h and <40 km/h | Indicate medium amount of traffic. |
Green | >40 km/h | Indicate that traffic is fast. |
Position of Window | Presence of Rain | Traffic Condition | ||||||
---|---|---|---|---|---|---|---|---|
Categories | Open | Closed | Yes | No | Very Slow | Slow | Medium | Fast |
No. of samples | 95 | 117 | 18 | 194 | 48 | 55 | 58 | 51 |
Encoding | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 3 |
Linear Regression Coefficients | Goodness of Fit | ||||
---|---|---|---|---|---|
MSE | R-Squared | F-Statistic | Prob (F) | ||
4.6124 (4.342–4.883) | 0.0787 (0.072–0.085) | 0.3442 | 0.72 | 539.7 | 6.04 × 10−60 |
Linear Regression Coefficients | Goodness of Fit | ||||
---|---|---|---|---|---|
MSE | R-Squared | F-Statistic | Prob (F) | ||
0.2278 (0.100–0.355) | 0.0037 (0.001–0.007) | 0.07649 | 0.025 | 5.346 | 0.0217 |
Logistic Regression Coefficients | Goodness of Fit | |
---|---|---|
Pseudo R-Squared | ||
−0.5264 (−2.100 1.047) | 0.0516 (0.007–0.097) | 0.04482 |
Linear Regression Coefficients | Goodness of Fit | ||||
---|---|---|---|---|---|
MSE | R-Squared | F-Statistic | Prob (F) | ||
0.6718 (0.444–0.900) | 0.0058 (0.000–0.011) | 0.2449 | 0.019 | 4.091 | 0.0444 |
Logistic Regression Coefficients | Goodness of Fit | |
---|---|---|
Pseudo R-squared | ||
0.7088 (−0.228 1.645) | 0.0238 (0.000–0.047) | 0.01403 |
Linear Regression Coefficients | Goodness of Fit | ||||
---|---|---|---|---|---|
MSE | R-Squared | F-Statistic | Prob (F) | ||
100.5496 (93.70–107.399) | 1.8095 (1.640–1.979) | 220.8105 | 0.68 | 445.2 | 8.60 × 10−54 |
Linear Regression Coefficients | Goodness of Fit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MSE | R-Squared | F-Statistic | Prob (F) | |||||||
14.19 | 0.2544 | 11.21 | 30.91 | 60.50 | −2.70 | −1.08 | 48.80 | 0.931 | 460.04 | 5.50 × 10−116 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flor, D.; Pena, D.; Pena, L.; A. de Sousa, V., Jr.; Martins, A. Characterization of Noise Level Inside a Vehicle under Different Conditions. Sensors 2020, 20, 2471. https://doi.org/10.3390/s20092471
Flor D, Pena D, Pena L, A. de Sousa V Jr., Martins A. Characterization of Noise Level Inside a Vehicle under Different Conditions. Sensors. 2020; 20(9):2471. https://doi.org/10.3390/s20092471
Chicago/Turabian StyleFlor, Daniel, Danilo Pena, Luan Pena, Vicente A. de Sousa, Jr., and Allan Martins. 2020. "Characterization of Noise Level Inside a Vehicle under Different Conditions" Sensors 20, no. 9: 2471. https://doi.org/10.3390/s20092471
APA StyleFlor, D., Pena, D., Pena, L., A. de Sousa, V., Jr., & Martins, A. (2020). Characterization of Noise Level Inside a Vehicle under Different Conditions. Sensors, 20(9), 2471. https://doi.org/10.3390/s20092471