Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features
<p>Basic principle of the cell average constant false alarm rate (CA-CFAR) detector. FFT: Fast Fourier Transform, FOD: Foreign Object Debris.</p> "> Figure 2
<p>Flowchart of the FOD classification. PSO: Particle Swarm Optimization.</p> "> Figure 3
<p>Flowchart of the feature extraction.</p> "> Figure 4
<p>(<b>a</b>) Amplitude spectrum with FOD present. <b>(b</b>) Amplitude spectrum with FOD absent.</p> "> Figure 5
<p>(<b>a</b>) Feature 1: the second-order central moment of the power spectrum. (<b>b</b>) Feature 2: the average power spectrum.</p> "> Figure 6
<p>The optimization process of the PSO algorithm.</p> "> Figure 7
<p>Detection results with the PSO support vector domain description (PSO-SVDD): (<b>a</b>) training procedure and (<b>b</b>) testing procedure.</p> "> Figure 8
<p>Detection results with the PSO-NSVDD: (<b>a</b>) training procedure and (<b>b</b>) testing procedure.</p> ">
Abstract
:1. Introduction
2. Traditional CA-CFAR for FOD Detection
2.1. Signal Model of LFMCW Radar
2.2. Traditional CFAR Algorithm
3. FOD Detection with the PSO-SVDD Classifier
3.1. Feature Extraction
3.2. Principle of SVDD
3.3. Parameter Optimization Based on the PSO
Algorithm 1. The optimization steps of parameters using PSO. |
Step 1: Input the training and testing data, initialize the parameters and of SVDD model, and set the searchable range of the parameters. |
Step 2: Initialize the particle swarm, including the population size , acceleration constants and , inertia weight , maximum number of iterations , and the particle speed and position. |
Step 3: Determine the individual extremum of the initial position and the optimal position of the particle swarm. |
Step 4: Calculate the fitness value of the new position of each particle in the swarm. |
Step 5: Compare the current optimal position of each particle with the optimal position of the particle swarm and update the optimal solution to the current optimal position of particle swarm. |
Step 6: Update the speed and position of the particle. |
Step 7: Determine whether the SVDD model with the current parameters can minimize the error rate or reach the maximum number of iterations. If one of them is satisfied, the optimal parameters and are obtained. Otherwise, return to step 4 to recalculate the particle fitness value. |
4. Detection Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, H.; Han, Z.; Feng, S.; Zhou, H.; Fang, Y. Foreign object debris material recognition based on convolutional neural networks. EURASIP J. Image Video Proc. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lan, Z.; Li, Z.; Lin, Y.; Xiao, Q. A practical application of runway Foreign Object Debris detection system at the airport. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 7–11 May 2018. [Google Scholar]
- Mollo, G.; Napoli, R.D.; Naviglio, G.; Chiara, C.D.; Capasso, E.; Alli, G. Multifrequency Experimental Analysis (10 to 77 GHz) on the Asphalt Reflectivity and RCS of FOD Targets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1441–1443. [Google Scholar] [CrossRef]
- Mehdi, G.; Miao, J. Millimeter wave FMCW radar for Foreign Object Debris (FOD) detection at airport runways. In Proceedings of the IEEE International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 9–12 January 2012; pp. 407–412. [Google Scholar]
- iFerret on Scratch. Available online: https://www.sourcesecurity.com/news/stratech-iferret-assess-ground-surveillance-systems-co-7811-ga.19664.html/ (accessed on 24 January 2019).
- Tarsier®: Automatic Runway FOD Detection System. Available online: https://www.tarsierfod.com/ (accessed on 19 December 2018).
- FOD Finder™. Available online: https://www.xsightsys.com/index.php/fodetect/ (accessed on 4 January 2016).
- What is FODetect? Available online: https://www.xsigthsys.com/fodetect.html (accessed on 24 January 2018).
- Zhang, H. The current status and inspiration of FOD industry in international civil aviation. Civ. Aviat. Manag. 2015, 295, 58–61. [Google Scholar]
- Cao, X.; Wang, P.; Meng, C.; Bai, X.; Gong, G.; Liu, M.; Qi, J. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement. Sensors 2018, 18, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, Y.; Liu, J.; Peng, X.; Zhou, Y.; Murphey, Y. FOD detection using DenseNet with focal loss of object samples for airport runway. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Bangalore, India, 18–21 November 2018; pp. 547–554. [Google Scholar]
- Yigit, E.; Demirci, S.; Unal, A.; Ozdemir, C.; Vertiy, A. Millimeter-wave ground-based synthetic aperture radar imaging for Foreign Object Debris detection: Experimental studies at short ranges. J. Infrared Milli. Terahertz Waves 2012, 33, 1227–1238. [Google Scholar] [CrossRef]
- Tom, A.; Viswanathan, R. Switched order statistics CFAR test for target detection. In Proceedings of the IEEE Radar Conference, Rome, Italy, 26–30 May 2008. [Google Scholar]
- Zattouta, B.; Farrouki, A.; Barkat, M. Automatic censoring detection using binary clutter-map estimation for non-gaussian environments. In Proceedings of the IEEE International Conference on Signal Processing and Communications, Dubai, UAE, 24–27 November 2007; pp. 205–208. [Google Scholar]
- Nitzberg, R. Clutter map CFAR analysis. IEEE Trans. Aerosp. Electron. Syst. 1986, 22, 419–421. [Google Scholar] [CrossRef]
- Leonardi, M.; Piracci, E.G.; Fastella, V. W-Band multiple-radar processing for airport Foreign Object Debris and humans detection. In Proceedings of the 1st European Microwave Conference in Central Europe, Prague, Czech Republic, 13–15 May 2019; pp. 285–288. [Google Scholar]
- Du, L.; Wang, B.; Wang, P.; Ma, Y.; Liu, H. Noise reduction method based on principal component analysis with beta process for micro-doppler radar signatures. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4028–4040. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Wang, Y.; Yu, X. Performance analysis and comparison of CFAR methods for FOD detection in airport runway environment. Radio Eng. 2015, 45, 53–57. [Google Scholar]
- Wang, L.; Tang, J.; Liao, Q. A study on radar target detection based on deep neural networks. IEEE Sens. Lett. 2019, 3. [Google Scholar] [CrossRef]
- Tax, D.M.J.; Duin, R.P.W. Support vector domain description. Pattern Recognit. Lett. 1999, 20, 1191–1199. [Google Scholar] [CrossRef]
- Tax, D.M.J.; Duin, R.P.W. Support vector data description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Marf, J.; Bruzzone, L.; Camps-Vails, G. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2683–2692. [Google Scholar] [CrossRef]
- Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2282–2291. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Shi, Z.; Lu, J. Center particle swarm optimization. Neurocomputing 2007, 70, 672–679. [Google Scholar] [CrossRef]
- Mu, T.; Nandi, A.K. Multiclass classification based on extended support vector data description. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
Methods | Metal Ball | Golf Ball | Metal Ball | Golf Ball | ||||
---|---|---|---|---|---|---|---|---|
CA-CFAR | 46.67 | 3.2 | 100 | 1.35 | 13.33 | 4.67 | 100 | 1.11 |
CM-CFAR | 53.14 | 7.41 | 100 | 4.58 | 21.57 | 7.68 | 100 | 3.14 |
PSO-SVDD | 87.33 | 1.25 | 100 | 0.65 | 64.67 | 0.95 | 100 | 0.83 |
PSO-NSVDD | 92.61 | 0.39 | 100 | 0.1 | 78.18 | 0.51 | 100 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, P.; Miao, C.; Tang, H.; Jiang, M.; Wu, W. Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features. Sensors 2020, 20, 2316. https://doi.org/10.3390/s20082316
Ni P, Miao C, Tang H, Jiang M, Wu W. Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features. Sensors. 2020; 20(8):2316. https://doi.org/10.3390/s20082316
Chicago/Turabian StyleNi, Peishuang, Chen Miao, Hui Tang, Mengjie Jiang, and Wen Wu. 2020. "Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features" Sensors 20, no. 8: 2316. https://doi.org/10.3390/s20082316
APA StyleNi, P., Miao, C., Tang, H., Jiang, M., & Wu, W. (2020). Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features. Sensors, 20(8), 2316. https://doi.org/10.3390/s20082316