An Experiment-Based Profile Function for the Calculation of Damage Distribution in Bulk Silicon Induced by a Helium Focused Ion Beam Process
<p>Damage of the silicon substrate caused by incident He-FIB in Monte Carlo simulation.</p> "> Figure 2
<p>The process of fabrication and preparation of cross-sections of bulk silicon scanned by He-FIB with line doses of 0.003, 0.0045, 0.006, 0.0075, 0.01, 0.02, 0.03, 0.04 and 0.05 nC/μm at beam energy of 25 keV: (<b>a</b>) Helium ion microscope image of bulk silicon scanned by He-FIB; (<b>b</b>) Image of bulk silicon after platinum layer deposited by FIB; (<b>c</b>) The lamella welded on the copper grid.</p> "> Figure 3
<p>TEM images of cross-section samples of silicon substrate treated with He-FIB: (<b>a</b>) TEM image with an ion dose of 0.03 nC/μm at a beam energy of 10 keV; (<b>b</b>) TEM image with an ion dose of 0.03 nC/μm at a beam energy of 15 keV; (<b>c</b>) TEM image with an ion dose of 0.0075 nC/μm at a beam energy of 35 keV; (<b>d</b>) TEM image with an ion dose of 0.035 nC/μm at a beam energy of 35 keV.</p> "> Figure 4
<p>Establishment of DPF and its application process for amorphous damage profile prediction.</p> "> Figure 5
<p>Process of genetic algorithm to solve DPF coefficients: (<b>a</b>) Coordinate system of the amorphous damage profile and the profile feature points; (<b>b</b>) Diagram of genetic algorithm to solve DPF coefficients.</p> "> Figure 6
<p>Variation of the DPF coefficients with ion dose at a beam energy of 35 keV: (<b>a</b>) Coefficient <span class="html-italic">s</span>; (<b>b</b>) Coefficients <span class="html-italic">l</span> and <span class="html-italic">γ</span>.</p> "> Figure 7
<p>TEM images of cross-section samples of silicon substrates treated with He-FIB at a beam energy of 25 keV: (<b>a</b>) Ion dose of 0.02 nC/μm; (<b>b</b>) Ion dose of 0.03 nC/μm; (<b>c</b>) Ion dose of 0.04 nC/μm; (<b>d</b>) Ion dose of 0.05 nC/μm.</p> "> Figure 8
<p>Experiments and DPF calculations of the amorphous damage profile of silicon substrate treated with He-FIB at a beam energy of 25 keV with ion doses of 0.02, 0.03, 0.04 and 0.05 nC/μm.</p> "> Figure 9
<p>Comparison of experiments and DPF calculations of the amorphous damage profile characteristic dimensions of silicon substrate treated with He-FIB at a beam energy of 25 keV: (<b>a</b>) Maximum amorphous width; (<b>b</b>) Amorphous depth.</p> "> Figure 10
<p>TEM images of cross-section samples of silicon substrate treated with He-FIB at a beam energy of 15 keV: (<b>a</b>) Ion dose of 0.02 nC/μm; (<b>b</b>) Ion dose of 0.03 nC/μm; (<b>c</b>) Ion dose of 0.04 nC/μm; (<b>d</b>) Ion dose of 0.05 nC/μm.</p> "> Figure 11
<p>Experiments and DPF calculations of the amorphous damage profile of silicon substrate treated with He-FIB at a beam energy of 15 keV with ion doses of 0.02, 0.03, 0.04 and 0.05 nC/μm.</p> "> Figure 12
<p>Comparison of experiments and DPF calculations of the amorphous damage profile characteristic dimensions of silicon substrate treated with He-FIB at a beam energy of 15 keV: (<b>a</b>) Maximum amorphous width; (<b>b</b>) Amorphous depth.</p> "> Figure 13
<p>Experiments and DPF calculations of the amorphous damage profile of silicon substrates treated with He-FIB with an ion dose of 0.03 nC/μm at beam energies of 10, 15, 25 and 35 keV.</p> ">
Abstract
:1. Introduction
2. Experiments
3. Methods
3.1. Damage Profile Function
3.2. Determination of DPF Function Coefficients
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hlawacek, G.; Gölzhäuser, A. Helium Ion Microscopy; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Timilsina, R.; Li, G.L.; Duscher, G.; Rack, P.D.; Slingenbergh, W.; van Dorp, W.F.; De Hosson, J.T.M.; Klein, K.L.; Wu, H.M.M.; et al. Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair. J. Vac. Sci. Technol. B 2014, 32, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Heinig, N.F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K.T. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope. Nanotechnology 2015, 26, 5. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, P.F.A.; Miro, H. Focused helium-ion-beam-induced deposition. Appl. Phys. A Mater. Sci. Process. 2014, 117, 1727–1747. [Google Scholar] [CrossRef]
- Lemme, M.C.; Bell, D.C.; Williams, J.R.; Stern, L.A.; Baugher, B.W.H.; Jarillo-Herrero, P.; Marcus, C.M. Etching of Graphene Devices with a Helium Ion Beam. ACS Nano 2009, 3, 2674–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.C.; Lemme, M.C.; Stern, L.A.; Rwilliams, J.; Marcus, C.M. Precision cutting and patterning of graphene with helium ions. Nanotechnology 2009, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, P.; van den Hurk, R.; Evoy, S. Helium Ion Microscope-Assisted Nanomachining of Resonant Nanostrings. Sensors 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, S.A.; Moktadir, Z.; Bagnall, D.M.; Mizuta, H.; Rutt, H.N. Focused helium ion beam milling and deposition. Microelectron. Eng. 2011, 88, 2452–2455. [Google Scholar] [CrossRef]
- Sidorkin, V.; van Veldhoven, E.; van der Drift, E.; Alkemade, P.; Salemink, H.; Maas, D. Sub-10-nm nanolithography with a scanning helium beam. J. Vac. Sci. Technol. B 2009, 27, L18–L20. [Google Scholar] [CrossRef] [Green Version]
- Winston, D.; Cord, B.M.; Ming, B.; Bell, D.C.; DiNatale, W.F.; Stern, L.A.; Vladar, A.E.; Postek, M.T.; Mondol, M.K.; Yang, J.K.W.; et al. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. J. Vac. Sci. Technol. B 2009, 27, 2702–2706. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.D.; Klein, K.; Shima, D.; Livengood, R.; Mutunga, E.; Vladar, A. Mechanism and applications of helium transmission milling in thin membranes. J. Vac. Sci. Technol. B 2014, 32, 7. [Google Scholar] [CrossRef]
- Kim, C.S.; Hobbs, R.G.; Agarwal, A.; Yang, Y.; Manfrinato, V.R.; Short, M.P.; Li, J.; Berggren, K.K. Focused-helium-ion-beam blow forming of nanostructures: Radiation damage and nanofabrication. Nanotechnology 2020, 31, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, T.Y.; Chen, Q.H.; Xing, Y.; Lin, X.H.; Fang, C.; Chai, Q. An experiment based damage profile function for focused helium ion beam process in fabrication of micro/nano structures. In Proceedings of the the 33rd International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2020), Vancouver, BC, Canada, 18–22 January 2020. [Google Scholar]
- Livengood, R.; Tan, S.; Greenzweig, Y.; Notte, J.; McVey, S. Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J. Vac. Sci. Technol. B 2009, 27, 3244–3249. [Google Scholar] [CrossRef]
- Custer, J.S.; Thompson, M.O.; Jacobson, D.C.; Poate, J.M.; Roorda, S.; Sinke, W.C.; Spaepen, F. Density of amorphous Si. Appl. Phys. Lett. 1994, 64, 437–439. [Google Scholar] [CrossRef]
- Stanford, M.G.; Lewis, B.B.; Iberi, V.; Fowlkes, J.D.; Tan, S.; Livengood, R.; Rack, P.D. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating. Small 2016, 12, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M.G.; Mahady, K.; Lewis, B.B.; Fowlkes, J.D.; Tan, S.D.; Livengood, R.; Magel, G.A.; Moore, T.M.; Rack, P.D. Laser-Assisted Focused He+ Ion Beam Induced Etching with and without XeF2 Gas Assist. ACS Appl. Mater. Interfaces 2016, 8, 29155–29162. [Google Scholar] [CrossRef]
- Li, R.; Zhu, R.; Chen, S.; He, C.; Li, M.; Zhang, J.; Gao, P.; Liao, Z.; Xu, J. Study of damage generation induced by focused helium ion beam in silicon. J. Vac. Sci. Technol. B 2019, 37, 031804. [Google Scholar] [CrossRef]
- Sefta, F.; Juslin, N.; Hammond, K.D.; Wirth, B.D. Molecular dynamics simulations on the effect of sub-surface helium bubbles on the sputtering yield of tungsten. J. Nucl. Mater. 2013, 438, S493–S496. [Google Scholar] [CrossRef]
- Pizzagalli, L.; David, M.L.; Bertolus, M. Molecular dynamics simulation of the initial stages of He bubbles formation in silicon. Model. Simul. Mater. Sci. Eng. 2013, 21, 13. [Google Scholar] [CrossRef]
- Deres, J.; David, M.L.; Alix, K.; Hebert, C.; Alexander, D.T.L.; Pizzagalli, L. Properties of helium bubbles in covalent systems at the nanoscale: A combined numerical and experimental study. Phys. Rev. B 2017, 96, 12. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.L.; Niu, L.L.; Zhang, Y.; Lu, G.H. Molecular dynamics simulations of temperature effect on tungsten sputtering yields under helium bombardment. Sci. China-Phys. Mech. Astron. 2018, 61, 4. [Google Scholar] [CrossRef]
- Mahady, K.T.; Tan, S.D.; Greenzweig, Y.; Raveh, A.; Rack, P.D. Simulating advanced focused ion beam nanomachining: A quantitative comparison of simulation and experimental results. Nanotechnology 2018, 29, 13. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M. The Stopping and Range of Ions in Matter; LuLu: Morrisville, NC, USA, 2008. [Google Scholar]
- Yang, Y.; Li, Y.G.; Short, M.P.; Kim, C.S.; Berggren, K.K.; Li, J. Nano-beam and nano-target effects in ion radiation. Nanoscale 2018, 10, 1598–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.C.; Blondel, S.; Hammond, K.D.; Wirth, B.D. Kinetic Monte Carlo Simulations of Helium Cluster Nucleation in Tungsten with Preexisting Vacancies. Fusion Sci. Technol. 2017, 71, 60–74. [Google Scholar] [CrossRef]
- Tan, S.D.; Livengood, R.; Hack, P.; Hallstein, R.; Shima, D.; Notte, J.; McVey, S. Nanomachining with a focused neon beam: A preliminary investigation for semiconductor circuit editing and failure analysis. J. Vac. Sci. Technol. B 2011, 29, 6. [Google Scholar] [CrossRef]
Coefficient | Value | Coefficient | Value |
---|---|---|---|
α1 | 1.792 | α2 | −0.112 |
α3 | 13.01 | α4 | 89.08 |
β1 | 55.83 | β2 | 521.2 |
β3 | 16380 | β4 | 82.68 |
β5 | −88.2 | β6 | 9.504 |
β7 | −7.831 | β8 | 269.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Shao, T.; Xing, Y. An Experiment-Based Profile Function for the Calculation of Damage Distribution in Bulk Silicon Induced by a Helium Focused Ion Beam Process. Sensors 2020, 20, 2306. https://doi.org/10.3390/s20082306
Chen Q, Shao T, Xing Y. An Experiment-Based Profile Function for the Calculation of Damage Distribution in Bulk Silicon Induced by a Helium Focused Ion Beam Process. Sensors. 2020; 20(8):2306. https://doi.org/10.3390/s20082306
Chicago/Turabian StyleChen, Qianhuang, Tianyang Shao, and Yan Xing. 2020. "An Experiment-Based Profile Function for the Calculation of Damage Distribution in Bulk Silicon Induced by a Helium Focused Ion Beam Process" Sensors 20, no. 8: 2306. https://doi.org/10.3390/s20082306
APA StyleChen, Q., Shao, T., & Xing, Y. (2020). An Experiment-Based Profile Function for the Calculation of Damage Distribution in Bulk Silicon Induced by a Helium Focused Ion Beam Process. Sensors, 20(8), 2306. https://doi.org/10.3390/s20082306