Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors
<p>(<b>a</b>) Abstract view of the system design highlighting the location of the printed circuit board (PCB), U-shaped sensor band, and ECG electrodes. (<b>bi</b>) External view of VitalCore prototype when electronics and sensors are attached to the rear side of the fabric using interfacing. The dashed box highlights the region where the electronics are placed. (<b>bii</b>) Top side of the PCB and the U-shaped carbon black conductive rubber sensor. The PCB shows the microcontroller unit (MCU), Bluetooth antenna, analogue to digital converter (ADC), secure digital (SD) cardholder and four placeholders to connect two electroresistive bands (ERBs).</p> "> Figure 2
<p>Components inside the T-shirt.</p> "> Figure 3
<p>The squared sum of accelerometer channels and the usage of filtered moving standard deviation to identify regions of high activity blocks.</p> "> Figure 4
<p>Data captured from the pneumotach spirometer flow and VitalCore. Inset: overlapped data excerpt.</p> "> Figure 5
<p>The pulse recorded from the pressure transducer and the corresponding reading from left/right bands of VitalCore. The readings were taken while holding breath.</p> "> Figure 6
<p>The magnitude of the respiration signal and pulse signal from the left-side band compared to heartbeat captured from a finger-worn pulse transducer. The heartbeat from the band is visible as small negative glitches, which represent the starting point of the pulse.</p> "> Figure 7
<p>Example signal patterns from a full night recording. (<b>a</b>) ERB output, (<b>b</b>) ECG output, (<b>c</b>) X, Y, and Z axis output from the accelerometer. The figures show different sections extracted from the full night recordings.</p> "> Figure 8
<p>Top Panel: Example of accelerometer data used to mask high activity regions. Middle Panel: Band data affected by moving artefacts. Bottom Panel: Band data following the masking of movement artefacts.</p> "> Figure 9
<p>Summary of sleep position from a full night recording. (<b>a</b>) Percentage of time spent in each position. (<b>b</b>) A polar diagram showing sleep angle versus sleep time in minutes.</p> "> Figure 10
<p>Results of Kruskal–Wallis test. The box plot shows the distribution of peak values of the sensor band versus sleep position.</p> "> Figure 11
<p>Summary of accelerometer-based respiratory rate estimation. (<b>a</b>) The respiratory signal captured by accelerometer and detected peaks. (<b>b</b>) The color-coded respiratory signal captured in a full night’s recording. (<b>c</b>) Breath-to-breath respiratory rate count comparison between accelerometer and band signal. (<b>d</b>) The estimated respiratory rate difference between the accelerometer and band data.</p> "> Figure 12
<p>Data excerpts for each walking speed showing (<b>a</b>) pneumotach spirometer output, (<b>b</b>) corresponding VitalCore output from two bands, and (<b>c</b>) corresponding accelerometer readings from VitalCore.</p> "> Figure A1
<p>Respiratory rate and variability representations. (<b>a</b>) Respiratory rate. (<b>b</b>) Distribution of respiratory rate. (<b>c</b>) Poincare plot of respiratory rate variability. (<b>d</b>) Probability distribution of respiratory rate variability.</p> "> Figure A2
<p>Summary of analysed ECG recordings. (<b>a</b>) Beat-to-beat heart rate variation. (<b>b</b>) Histogram of heart rate and corresponding probability. (<b>c</b>) Poincare plot of n<sup>th</sup> heartbeat against (n + 1)<sup>th</sup> heartbeat. (<b>d</b>) Histogram of heart rate difference.</p> "> Figure A3
<p>Timestamp graph for ground truth and VitalCore with linear temporal correlation (LTC) between ground truth and VitalCore for walking speeds of 1 km/h, 2 km/h, 3 km/h, and 4 km/h.</p> ">
Abstract
:1. Introduction
- Low cost.
- Simple setup procedure.
- Comfortable and suitable for multiple day/night use.
- Accurate representation of the physiological metrics of interest.
2. Material and Methods
2.1. Sensors
2.2. Hardware and Electronics
- Breathing pattern (rate/variability)
- Cardiac cycle (rate/variability)
- Body movement (body position/activity)
2.3. System Benchmarking and Evaluation
2.4. Physiological Experiments
2.4.1. Respiration
2.4.2. Cardiac Activity
2.4.3. Sleep Test
- Take the squared sum of each x, y, and z channel for each sample.
- Calculate the absolute difference between subsequent samples.
- Calculate the mean (µ) and standard deviation (σ) of the differentiated array () for 10-s windows. Add mean (µ) to 3σ to cover 99.7% of the values.
- Apply a 10-s moving mean filter to the µ + 3σ values.
- Use the findpeaks() function to find peaks with a prominence >50.
- Use peak width at half prominence to mask the high activity regions. The masked region is twice the peak width.
2.4.4. Performance during Gait
3. Results
3.1. Hardware and Verification Tests
3.1.1. Physiological Experiment 1: Respiratory Rate and Respiratory Rate Variability
3.1.2. Physiological Experiment 2: ECG Frontend
3.1.3. Physiological Experiment 3: ERB-Derived Cardiac Activity
3.2. Sleep Monitoring
3.2.1. Full Night Recording
3.2.2. Respiratory Rate and Variability
3.2.3. Heart Rate and Heart Rate Variability
3.2.4. Actigraphy and Movement Artefact Rejection
3.2.5. Sleep Position and the Effect of Respiratory Output
3.2.6. Respiratory Rate Calculation Using Accelerometer Readings
3.2.7. Respiration Rate Calculation during Light Activity
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Respiratory Rate (RR), Respiratory rate Variability (RRV), Heart Rate (HR), and Heart Rate Variability (HRV)
Appendix A.2. Respiratory Rate Calculation during Light Walking and Linear Temporal Correlation (LTC) with Ground Truth Data
References
- Tan, H.L.; Gozal, D.; Ramirez, H.M.; Bandla, H.P.R.; Kheirandish-Gozal, L. Overnight Polysomnography versus Respiratory Polygraphy in the Diagnosis of Pediatric Obstructive Sleep Apnea. Sleep 2014, 37, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W.; Hunter, A.; Gravill, N.; Matusiewicz, S. Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea. IEEE Trans. Biomed. Eng. 2014, 61, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesner, S.; Yaniv, Z. Monitoring patient respiration using a single optical camera. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23 August 2007; pp. 2740–2743. [Google Scholar]
- US8790269B2. Monitoring Respiration with a Thermal Imaging System—Google Patents. Available online: https://patents.google.com/patent/US8790269B2/en (accessed on 21 November 2019).
- Yamana, Y.; Tsukamoto, S.; Mukai, K.; Maki, H.; Ogawa, H.; Yonezawa, Y. A sensor for monitoring pulse rate, respiration rhythm, and body movement in bed. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 27 April–1 May 2011; pp. 5323–5326. [Google Scholar]
- Mukai, K.; Yonezawa, Y.; Ogawa, H.; Maki, H.; Caldwell, W.M. A remote monitor of bed patient cardiac vibration, respiration and movement. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 3–6 September 2009; pp. 5191–5194. [Google Scholar]
- Gargiulo, G.; Breen, P. An electrodeless, wearable system for simultaneous monitoring of cardiac and respiratory function. Eur. Respir. J. 2014, 44 (Suppl. 58), P1990. [Google Scholar]
- Gargiulo, G.D.; Gunawardana, U.; O’Loughlin, A.; Sadozai, M.; Varaki, E.S.; Breen, P.P. A Wearable Contactless Sensor Suitable for Continuous Simultaneous Monitoring of Respiration and Cardiac Activity. J. Sens. 2015, 2015, 151859. [Google Scholar] [CrossRef] [Green Version]
- Breen, P.; Naik, G.; Tong, B. Rethinking RIP—Potential advantages of DC respiratory effort bands. J. Sleep Res. 2018, 27, 12766. [Google Scholar]
- Jayarathna, T.; Gargiulo, G.D.; Breen, P.P. Polymer sensor embedded, IOT enabled t-shirt for long-term monitoring of sleep disordered breathing. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 139–143. [Google Scholar]
- Jayarathna, T.; Gargiulo, G.D.; Breen, P.P. Live Demonstration: Invisible Vital Monitoring. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019. [Google Scholar]
- Breen, P.P.; Jayarathna, T.; Gargiulo, G.D. Live Demonstration: Morphic Sensor for Diagnosis of Peripheral Vascular Disease. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019. [Google Scholar]
- Everion. Available online: https://www.biovotion.com/everion/ (accessed on 22 January 2020).
- Hexoskin Smart Shirts. Cardiac, Respiratory, Sleep & Activity Metrics. Available online: https://www.hexoskin.com/ (accessed on 22 January 2020).
- Ambiotex. The Intelligent High-Tech Sports Shirt with Special Components. Available online: https://www.ambiotex.com/en/ (accessed on 22 January 2020).
- Athos. Available online: https://www.liveathos.com/athletes (accessed on 22 January 2020).
- Fukuma, N.; Hasumi, E.; Fujiu, K.; Waki, K.; Toyooka, T.; Komuro, I.; Ohe, K. Feasibility of a T-Shirt-Type Wearable Electrocardiography Monitor for Detection of Covert Atrial Fibrillation in Young Healthy Adults. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Roudjane, M.; Bellemare-Rousseau, S.; Khalil, M.; Gorgutsa, S.; Miled, A.; Messaddeq, Y. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection. Sensors 2018, 18, 973. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, D.; Romano, C.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.A.; Schena, E. Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors 2019, 19, 3581. [Google Scholar] [CrossRef] [Green Version]
- Trindade, I.; da Silva, J.M.; Miguel, R.; Pereira, M.; Lucas, J.; Oliveira, L.; Silva, M.S. Design and Evaluation of Novel Textile Wearable Systems for the Surveillance of Vital Signals. Sensors 2016, 16, 1573. [Google Scholar] [CrossRef] [Green Version]
- Kiaghadi, A.; Homayounfar, S.Z.; Gummeson, J.; Andrew, T.; Ganesan, D. Phyjama. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, J.; Wu, H.; Wang, W.; Wang, B.; Liu, H. Development of a Respiratory Inductive Plethysmography Module Supporting Multiple Sensors for Wearable Systems. Sensors 2012, 12, 13167–13184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huwiler, S. Interaction of Brain and Heart Activity during Sleep. Master’s Thesis, ETH Zurich, Zürich, Switzerland, 10 September 2019. [Google Scholar]
- Bruyneel, M.; Ninane, V. Unattended home-based polysomnography for sleep disordered breathing: Current concepts and perspectives. Sleep Med. Rev. 2014, 18, 341–347. [Google Scholar] [CrossRef] [PubMed]
- ApneaLink Air ResMed. Available online: https://www.resmed.com/au/en/healthcare-professional/products/diagnostics/apnealink-air.html (accessed on 23 January 2020).
- Sleep Monitor - Diagnose Sleep Apnea, PLMS & Sleep Bruxism – Nox T3. ResMed. Available online: https://noxmedical.com/products/nox-t3-sleep-monitor/. (accessed on 23 January 2020).
- Philips - Alice PDx Portable Sleep Diagnostic System. Koninklijke Philips N.V. Available online: https://www.philips.com.au/healthcare/product/HC1043941/alice-pdx-portable-sleep-diagnostic-system. (accessed on 23 January 2020).
- Philips – Alice NightOne. Koninklijke Philips N.V. Available online: https://www.philips.com.au/healthcare/product/HC1109289/alice-nightone-home-sleep-testing-device. (accessed on 23 January 2020).
- Varaki, E.S.; Breen, P.; Gargiulo, G.; Varaki, E.S.; Breen, P.P.; Gargiulo, G.D. Quantification of a Low-Cost Stretchable Conductive Sensor Using an Expansion/Contraction Simulator Machine: A Step towards Validation of a Noninvasive Cardiac and Respiration Monitoring Prototype. Machines 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- El-Arja, S.; Jayarathna, T.; Naik, G.; Breen, P.; Gargiulo, G. Characterisation of Morphic Sensors for Body Volume and Shape Applications. Sensors 2019, 20, 90. [Google Scholar] [CrossRef] [Green Version]
- El, S.; Jayarathna, T.A.; Ulloa, F.; Gargiulo, G.; Breen, P. Characterization of Coated Piezo-resistive Fabric for Respiration Sensing. In Proceedings of the 2019 International Conference on Electrical Engineering Research & Practice (ICEERP), Sydney, Australia, 24–28 November 2019; pp. 1–6. [Google Scholar]
- Retory, Y.; Niedzialkowski, P.; De Picciotto, C.; Bonay, M.; Petitjean, M. New respiratory inductive plethysmography (RIP) method for evaluating ventilatory adaptation during mild physical activities. PLoS ONE 2016, 11, e0151983. [Google Scholar] [CrossRef] [Green Version]
- Mahdiani, S.; Jeyhani, V.; Peltokangas, M.; Vehkaoja, A. Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis? In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015, Milan, Italy, 25–29 August 2015; pp. 5948–5951. [Google Scholar]
- Collier, B.J.; Paulins, V.A.; Collier, J.R. Effects of Interfacing Type on Shear And Drape Behavior of Apparel Fabrics. Cloth. Text. Res. J. 1989, 7, 51–56. [Google Scholar] [CrossRef]
- Peak Analysis. MATLAB & Simulink Example—MathWorks Australia. Available online: https://au.mathworks.com/help/signal/examples/peak-analysis.html#PeakAnalysisExample-5 (accessed on 23 January 2020).
- Find Local Maxima—MATLAB Findpeaks—MathWorks India. Available online: https://in.mathworks.com/help/signal/ref/findpeaks.html (accessed on 13 March 2019).
- Finger Pulse Transducers for Blood Pressure. ADInstruments. Available online: https://www.adinstruments.com/products/pulse-transducers (accessed on 11 March 2020).
- Dissanayake, T.; Rajapaksha, Y.; Ragel, R.; Nawinne, I. An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition. Sensors 2019, 19, 4495. [Google Scholar] [CrossRef] [Green Version]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef]
- Cretikos, M.; Chen, J.; Hillman, K.; Bellomo, R.; Finfer, S.; Flabouris, A. Merit Study Investigators. The objective medical emergency team activation criteria: A case–control study. Resuscitation 2007, 73, 62–72. [Google Scholar] [CrossRef]
- Subbe, C.P.; Davies, R.G.; Williams, E.; Rutherford, P.; Gemmell, L. Effect of introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 2003, 58, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Goldhill, D.R.; McNarry, A.F.; Mandersloot, G.; McGinley, A. A physiologically-based early warning score for ward patients: The association between score and outcome. Anaesthesia 2005, 60, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Fieselmann, J.F.; Hendryx, M.S.; Helms, C.M.; Wakefield, D.S. Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J. Gen. Intern. Med. 1993, 8, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, T.J.; Kenward, G.; Vlachonikolis, I.G.; Payne, S.; Castle, N. The identification of risk factors for cardiac arrest and formulation of activation criteria to alert a medical emergency team. Resuscitation 2002, 54, 125–131. [Google Scholar] [CrossRef]
- Guilleminault, C.; Winkle, R.; Connolly, S.; Melvin, K.; Tilkian, A. Cyclical variation of the heart rate in sleep apnoea syndrome. Lancet 1984, 323, 126–131. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; Romano, S.; Marrone, O.; Chiodi, M.; Bonsignore, G. Different heart rate patterns in obstructive apneas during NREM sleep. Sleep 1997, 20, 1167–1174. [Google Scholar]
- Žemaityt, D.; Varoneckas, G.; Plauška, K.; Kauk-Nas, J. Components of the heart rhythm power spectrum in wakefulness and individual sleep stages. Int. J. Psychophysiol. 1986, 4, 129–141. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [Google Scholar] [CrossRef] [Green Version]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Karlen, W.; Mattiussi, C.; Floreano, D. Sleep and Wake Classification With ECG and Respiratory Effort Signals. IEEE Trans. Biomed. Circ. Syst. 2009, 3, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Four-Quadrant Inverse Tangent—MATLAB Atan2. Available online: https://www.mathworks.com/help/matlab/ref/atan2.html (accessed on 8 January 2020).
- Elsner, J.B.; Tsonis, A.A. Singular Spectrum Analysis: A New Tool in Time Series Analysis; Springer: New York, NY, USA, 1996. [Google Scholar]
- Javier, S.; Francisco, A. Available online: https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/8115/versions/1/previews/ssa.m/index.html (accessed on 5 November 2019).
- Golyandina, N.; Nekrutkin, V.V.; Anatolii, A.A.; Zhigljavsky, A. Analysis of Time Series Structure: SSA and Related Techniques; Chapman & Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Wilcoxon Rank Sum Test—MATLAB Ranksum—MathWorks Australia. Available online: https://au.mathworks.com/help/stats/ranksum.html (accessed on 5 February 2020).
- Collop, N.A.; Tracy, S.L.; Kapur, V.; Mehra, R.; Kuhlmann, D.; Fleishman, S.A.; Ojile, J.M. Obstructive sleep apnea devices for Out-Of-Center (OOC) testing: Technology evaluation. J. Clin. Sleep 2011, 7, 531–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Product | Purpose | HR | HR Technology | RR | RR Technology |
---|---|---|---|---|---|
Everion [14] | Fitness/medical | ✓ | PPG | ✓ | — |
Hexoskin [15] | Fitness/medical | ✓ | ECG | ✓ | RIP bands |
Ambiotex [16] | Fitness | ✓ | ECG | ✗ | — |
Athos [17] | Fitness | ✓ | ECG | ✗ | — |
Hitoe [18] | Fitness/consumer | ✓ | ECG | ✗ | — |
Roudjane et al. (2018) [19] | Consumer | ✗ | — | ✓ | Wireless antenna signal attenuation |
Presti et al. (2019) [20] | Sports | ✗ | — | ✓ | Flexible Fiber Bragg Grating |
Trindade et al. (2016) [21] | Consumer | ✓ | ECG | ✗ | — |
“Phyjama”, Kiaghadi, A. (2019) [22] | Consumer/medical | ✓ | Resistive sensor fabric | ✓ | Resistive sensor fabric |
Our work | Consumer/Medical | ✓ | ECG + Carbon black elastomer | ✓ | Carbon black elastomer |
Parameter | Value |
---|---|
Length | 11.6 mm |
Width | 2 mm |
Thickness | 2 mm |
Resistance/cm | 258.6 Ω |
Δ Resistance/cm | 500 Ω |
Parameter | Value | Comment |
---|---|---|
Power consumption | 12.28 mA | Average current used by all the peripherals |
Signal-to-noise ratio | 84 dB | DC signal |
SD data write | 375 kB/s | Maximum |
SD data read | 538 kB/s | Maximum |
Bluetooth link throughput | 1300 kb/s | Using Bluetooth 5 |
Parameter | Observed | Ideal Value | Error |
---|---|---|---|
Input sine waves (n) | 499,628 | 499,628 | 0 |
Time for n waves | 499,624 s | 499,628 s | 0.000650% |
Sampling rate | 399.9968 Hz | 400 | 0.0032 Hz |
Maximum period | 1.01 s | 1 s | 1 ms |
Minimum period | 0.99 s | 1 s | 1 ms |
Sleep Position | Mean | Trimmed Mean | Standard Deviation |
---|---|---|---|
Supine | 6.07 | 5.32 | 5.71 |
Left | 9.33 | 8.59 | 8.12 |
Right | 13.03 | 12.59 | 6.68 |
Face-down | 7.16 | 6.91 | 4.32 |
Source | SS/(1010) | Degrees of Freedom (Df) | Mean Squares (MS) | Chi-sq | Prob > Chi-sq |
---|---|---|---|---|---|
Groups | 0.830654 | 3 | 2.7688 × 109 | 1786.09 | 0 |
Error | 2.64295 | 7466 | 3.5399 × 106 | ||
Total | 3.47361 | 7469 |
Sleep Position | Left | Right | Face-Down |
---|---|---|---|
Supine | 0.9542 | 0.00039 | 0.00024 |
Left | - | 0.00022 | 0.00014 |
Right | - | - | 0.6752 |
Sleep Position | Left Band Power | Right Band Power | Power Difference |
---|---|---|---|
Supine | 0.365 | 0.300 | 0.065 |
Left | 0.289 | 0.535 | −0.246 |
Right | 1.890 | 1.132 | 0.757 |
Face-down | 1.796 | 1.704 | 0.092 |
Walking Speed | Min LTC | Max LTC | LTC Range | LTC Mean | LTC Median | LTC Mode | LTC Standard Deviation |
---|---|---|---|---|---|---|---|
1 km/h | 0.24 | 0.75 | 0.51 | 0.4579 | 0.475 | 0.49 | 0.1128 |
2 km/h | 0.13 | 1.00 | 0.87 | 0.6198 | 0.605 | 0.50 | 0.2043 |
3 km/h | 0.49 | 0.99 | 0.50 | 0.6897 | 0.660 | 0.55 | 0.1490 |
4 km/h | 0.49 | 1.00 | 0.51 | 0.8090 | 0.820 | 0.83 | 0.1033 |
Walking Speed | Dataset | Respiratory Rate (Breaths/Minute) | Standard Deviation | Step Frequency (Steps/Minute) | Peak Detection Accuracy |
---|---|---|---|---|---|
1 km/h | Ground truth | 16.32 | 2.51 | 64.38 | 100% |
VitalCore | 16.53 | 1.90 | |||
2 km/h | Ground truth | 20.42 | 3.14 | 83.04 | 100% |
VitalCore | 20.53 | 3.28 | |||
3 km/h | Ground truth | 17.00 | 4.23 | 104.40 | 88.89% |
VitalCore | 19.99 | 7.75 | |||
4 km/h | Ground truth | 21.70 | 3.02 | 114.78 | 100% |
VitalCore | 21.71 | 3.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayarathna, T.; Gargiulo, G.D.; Breen, P.P. Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors. Sensors 2020, 20, 1583. https://doi.org/10.3390/s20061583
Jayarathna T, Gargiulo GD, Breen PP. Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors. Sensors. 2020; 20(6):1583. https://doi.org/10.3390/s20061583
Chicago/Turabian StyleJayarathna, Titus, Gaetano D. Gargiulo, and Paul P. Breen. 2020. "Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors" Sensors 20, no. 6: 1583. https://doi.org/10.3390/s20061583
APA StyleJayarathna, T., Gargiulo, G. D., & Breen, P. P. (2020). Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors. Sensors, 20(6), 1583. https://doi.org/10.3390/s20061583