Recent Progress in 3D Printed Mold-Based Sensors
<p>Schematic diagram of the steps of the fabrication process of the microstructure Polydimethylsiloxane (PDMS) films [<a href="#B47-sensors-20-00703" class="html-bibr">47</a>]. Reproduced from Mannsfeld, S.C.; Tee, B.C.; Stoltenberg, R.M.; Chen, C.V.H.; Barman, S.; Muir, B.V.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. <span class="html-italic">Nat. Mater.</span> <b>2010</b>, <span class="html-italic">9</span>, 859.</p> "> Figure 2
<p>Schematic diagram of the fabrication process of the 3D printed molds and subsequent casting of the PDMS and graphene on the mold and microchannel, respectively [<a href="#B50-sensors-20-00703" class="html-bibr">50</a>]. Reproduced from Kamat, A.M.; Pei, Y.; Kottapalli, A.G. Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. <span class="html-italic">Nanomaterials</span> <b>2019</b>, <span class="html-italic">9</span>, 954.</p> "> Figure 3
<p>Illustration of the bending flexibility of the Graphite-Polydimethylsiloxane (PI) sensor patch. (<b>a</b>) 3D printing was done to develop (<b>b</b>) the molds on top on which (<b>c</b>) graphite and PDMS were cast to form the electrodes and substrates, respectively. (<b>d</b>) The sample was desiccated, cured, and peeled off to form (<b>e</b>) the sensor patches. [<a href="#B35-sensors-20-00703" class="html-bibr">35</a>]. Reproduced from Nag, A.; Feng, S.; Mukhopadhyay, S.C.; Kosel, J.; Inglis, D. 3D printed mold-based graphite/PDMS sensor for low-force applications. <span class="html-italic">Sens. Actuators A Phys.</span> <b>2018</b>, <span class="html-italic">280</span>, 525–534.</p> "> Figure 4
<p>Representation of the formed balloon fin actuators in different geometries [<a href="#B55-sensors-20-00703" class="html-bibr">55</a>]. Reproduced from Hwang, Y.; Paydar, O.H.; Candler, R.N. Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. <span class="html-italic">Sens. Actuators A Phys.</span> <b>2015</b>, <span class="html-italic">234</span>, 65–71.</p> "> Figure 5
<p>Representation of the individual steps of the molding and demolding processes to form soft tissue prostheses [<a href="#B57-sensors-20-00703" class="html-bibr">57</a>]. Reproduced from He, Y.; Xue, G.H.; Fu, J.Z. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. <span class="html-italic">Sci. Rep.</span> <b>2014</b>, <span class="html-italic">4</span>, 6973.</p> "> Figure 6
<p>Schematic diagram of the fabrication process of the paper-based electrodes [<a href="#B59-sensors-20-00703" class="html-bibr">59</a>]. Reproduced from Xiao, F.; Li, Y.; Zan, X.; Liao, K.; Xu, R.; Duan, H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. <span class="html-italic">Adv. Funct. Mater.</span> <b>2012</b>, <span class="html-italic">22</span>, 2487–2494.</p> "> Figure 7
<p>(<b>a</b>) Schematic diagram of the highly flexible tactile sensor depicting an interlocked truncated saw-tooth structure; (<b>b</b>) structural design of the tactile sensor; (<b>c</b>) electrode configuration of the sensing device; (<b>d</b>) the cross-sectional view of the sensing unit for pressure detection. [<a href="#B60-sensors-20-00703" class="html-bibr">60</a>]. Reproduced from Wang, Y.; Zhu, L.; Mei, D.; Zhu, W. Highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites. <span class="html-italic">J. Mater. Chem. C</span> <b>2019</b>.</p> "> Figure 8
<p>(<b>a</b>) Schematic diagram of the patterns for the molds for sensor fabrication. (<b>b</b>) Optical microscopic image of the molds [<a href="#B65-sensors-20-00703" class="html-bibr">65</a>]. Reproduced from Han, C.J.; Chiang, H.P.; Cheng, Y.C. Using micro-molding and stamping to fabricate conductive polydimethylsiloxane-based flexible high-sensitivity strain gauges. <span class="html-italic">Sensors</span> <b>2018</b>, <span class="html-italic">18</span>, 618.</p> "> Figure 9
<p>Schematic diagram of the three-quarter view sector of the developed sensor [<a href="#B66-sensors-20-00703" class="html-bibr">66</a>]. Sampath, P.; De Silva, E.; Sameera, L.; Udayanga, I.; Amarasinghe, R.; Weragoda, S.; Mitani, A. Development of a conductive polymer-based novel 1- Degree of Freedom (DOF) tactile sensor with cylindrical arch spring structure using 3D printing technology. <span class="html-italic">Sensors</span> <b>2019</b>, <span class="html-italic">19</span>, 318.</p> "> Figure 10
<p>(<b>a</b>) Arrays of micro ridges that were printed using selective laser sintering. (<b>b</b>) Enlarged view of the rectangular patters. (<b>c</b>) Printed patterns on the roughness plates [<a href="#B69-sensors-20-00703" class="html-bibr">69</a>]. Reproduced from Zhang, N.; Liu, J.; Zhang, H.; Kent, N.J.; Diamond, D.; Gilchrist, M.D. 3D printing of metallic microstructured mold using selective laser melting for injection molding of plastic microfluidic devices. <span class="html-italic">Micromachines</span> <b>2019</b>, <span class="html-italic">10</span>, 595.</p> "> Figure 11
<p>The fabrication process of the (<b>a</b>) 3D printed mold. (<b>b</b>) Pouring and curing of the pre-polymer to form the replica mold. (<b>c</b>) Extraction of the mold and subsequently rotated. (<b>d</b>) Finish product depicting the non-planar PDMS microfluidic channel. Reproduced from Hwang, Y.; Paydar, O.H.; Candler, R.N. 3D printed molds for non-planar PDMS microfluidic channels. <span class="html-italic">Sens. Actuators A Phys.</span> <b>2015</b>, <span class="html-italic">226</span>, 137–142 [<a href="#B75-sensors-20-00703" class="html-bibr">75</a>].</p> "> Figure 12
<p>Schematic diagram of the fabrication of piezoresistive sensors using multi-walled carbon nanotubes (MWCNTs)-polymer composites. (<b>a</b>), (<b>b</b>) TangoPlus is poured onto the formed mold and cured to form the insulation layer; (<b>c</b>), (<b>d</b>) The screen printing and thermal curing of the MWCNTs/polymer paste were done to form the first electrode layer; (<b>e</b>), (<b>f</b>) A composite formed by ionic liquid and polymer was poured on the mold and cured to form a piezoresistive intermediate layer; (<b>g</b>), (<b>h</b>) The second layer was then formed by pouring and curing of the MWCNTs/polymer paste; (<b>i</b>), (<b>j</b>) Finally, TangoPlus was poured and subsequently cured onto the samples to form the top insulation layer; (<b>k</b>) Enlarged view of the sensor. Reproduced from Emon, M.; Choi, J.W. Flexible piezoresistive sensors embedded in 3D printed tires. <span class="html-italic">Sensors</span> <b>2017</b>, <span class="html-italic">17</span>, 656. Reproduced from Emon, M.; Choi, J.W. Flexible piezoresistive sensors embedded in 3D printed tires. <span class="html-italic">Sensors</span> <b>2017</b>, <span class="html-italic">17</span>, 656 [<a href="#B76-sensors-20-00703" class="html-bibr">76</a>].</p> "> Figure 13
<p>Schematic diagram of the fabrication of the microfluidic chip. The different colors in the figure indicate the individual components of the chip [<a href="#B79-sensors-20-00703" class="html-bibr">79</a>]. Reproduced from King, P.H.; Jones, G.; Morgan, H.; de Planque, M.R.; Zauner, K.P. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed molds. <span class="html-italic">Lab Chip</span> <b>2014</b>, <span class="html-italic">14</span>, 722–729.</p> "> Figure 14
<p>Schematic diagram of the steps of fabrication for the development of the inkjet-utilized printed prototypes. <b>(a)</b> Schematic diagram of the steps of fabrication for the development of the inkjet-utilized printed prototypes; (<b>b</b>) Cross-sectional views show that the sensors have aspect ratios, as given in with; (<b>c</b>) different magnifications; (<b>d</b>) A sketch to showcase the cross-sectional view with dimensional notations [<a href="#B80-sensors-20-00703" class="html-bibr">80</a>]. Reproduced from Su, W.; Cook, B.S.; Fang, Y.; Tentzeris, M.M. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. <span class="html-italic">Sci. Rep.</span> <b>2016</b>, <span class="html-italic">6</span>, 35111.</p> "> Figure 15
<p>Representation of the use of different 3D printing techniques over the years for developing sensing prototypes [<a href="#B104-sensors-20-00703" class="html-bibr">104</a>]. Reproduced from Available online: <a href="https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis" target="_blank">https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis</a>.</p> ">
Abstract
:1. Introduction
2. 3D Printed Mold-Based Sensors for Different Applications
2.1. Biomedical Applications
2.2. Industrial Applications
3. Current Challenges and Future Opportunities
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.; Ning, H.; Mu, Q.; Zheng, Y.; Zeng, J.; Yang, L.T.; Huang, R.; Ma, J. A review of the smart world. Future Gener. Comput. Syst. 2019, 96, 678–691. [Google Scholar] [CrossRef]
- Chen, L.; Nugent, C.D. Sensor-Based Activity Recognition Review. In Human Activity Recognition and Behaviour Analysis; Springer: Basel, Switzerland, 2019; pp. 23–47. [Google Scholar]
- Zhang, G.-J.; Ning, Y. Silicon nanowire biosensor and its applications in disease diagnostics: A review. Anal. Chim. Acta 2012, 749, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuators B Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Disadvantages of Silicon Sensors. Available online: https://www.printedelectronicsworld.com/articles/52/problems-with-silicon-chips (accessed on 23 January 2020).
- Advantages and Disadvantages of Silicon. Available online: http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Silicon.html (accessed on 23 January 2020).
- Nag, A.; Mukhopadhyay, S.C.; Kosel, J. Wearable Flexible Sensors: A Review. IEEE Sens. J. 2017, 17, 3649–3960. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2017. [Google Scholar] [CrossRef]
- Nag, A.; Mukhopadhyay, S.C.; Kosel, J. Printed Flexible Sensors: Fabrication, Characterization and Implementation; Springer: Basel, Switzerland, 2019; Volume 33. [Google Scholar]
- Han, T.; Nag, A.; Afsarimanesh, N.; Mukhopadhyay, S.C.; Kundu, S.; Xu, Y. Laser-Assisted Printed Flexible Sensors: A Review. Sensors 2019, 19, 1462. [Google Scholar] [CrossRef] [Green Version]
- Jayathilaka, W.A.D.M.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S.W. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 2015, 15, 3164–3185. [Google Scholar] [CrossRef]
- Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Adv. Funct. Mater. 2014, 24, 3299–3304. [Google Scholar] [CrossRef]
- Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle ink for flexible electronics. J. Mater. Chem. C 2019. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems. Procedia Technol. 2014, 15, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Maddipatla, D.; Narakathu, B.B.; Avuthu, S.G.R.; Emamian, S.; Eshkeiti, A.; Chlaihawi, A.A.; Bazuin, B.J.; Joyce, M.K.; Barrett, C.W.; Atashbar, M.Z. A novel flexographic printed strain gauge on paper platform. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Wang, C.-T.; Huang, K.-Y.; Lin, D.T.; Liao, W.-C.; Lin, H.-W.; Hu, Y.-C. A flexible proximity sensor fully fabricated by inkjet printing. Sensors 2010, 10, 5054–5062. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, Y.; Liang, J.; Wan, X.; Chen, Y. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684. [Google Scholar] [CrossRef]
- Khan, S.; Tinku, S.; Lorenzelli, L.; Dahiya, R.S. Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens. J. 2014, 15, 3146–3155. [Google Scholar] [CrossRef]
- Nomura, K.-I.; Kaji, R.; Iwata, S.; Otao, S.; Imawaka, N.; Yoshino, K.; Mitsui, R.; Sato, J.; Takahashi, S.; Nakajima, S.-I. A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing. Sci. Rep. 2016, 6, 19947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-M.; Lee, S.-H.; Noh, J.-H.; Kim, D.-S.; Chun, S. The effect of shear force on ink transfer in gravure offset printing. J. Micromech. Microeng. 2010, 20, 125026. [Google Scholar] [CrossRef]
- Muth, J.T.; Vogt, D.M.; Truby, R.L.; Mengüç, Y.; Kolesky, D.B.; Wood, R.J.; Lewis, J.A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 2014, 26, 6307–6312. [Google Scholar] [CrossRef]
- Guo, S.Z.; Qiu, K.; Meng, F.; Park, S.H.; McAlpine, M.C. 3D printed stretchable tactile sensors. Adv. Mater. 2017, 29, 1701218. [Google Scholar] [CrossRef]
- Advantages of 3D Printing. Available online: https://www.3dhubs.com/knowledge-base/advantages-3d-printing/#risk-mitigation (accessed on 23 January 2020).
- Distler, T.; Boccaccini, A.R. 3D Printing of Electrically Conductive Hydrogels for Tissue Engineering and Biosensors–A Review. Acta Biomater. 2019. [Google Scholar] [CrossRef]
- Ambrosi, A.; Moo, J.G.S.; Pumera, M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv. Funct. Mater. 2016, 26, 698–703. [Google Scholar] [CrossRef]
- Ragones, H.; Schreiber, D.; Inberg, A.; Berkh, O.; Kósa, G.; Freeman, A.; Shacham-Diamand, Y. Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics. Sens. Actuators B Chem. 2015, 216, 434–442. [Google Scholar] [CrossRef]
- Agarwala, S.; Goh, G.L.; Yap, Y.L.; Goh, G.D.; Yu, H.; Yeong, W.Y.; Tran, T. Development of bendable strain sensor with embedded microchannels using 3D printing. Sens. Actuators A Phys. 2017, 263, 593–599. [Google Scholar] [CrossRef]
- Le, T.; Song, B.; Liu, Q.; Bahr, R.A.; Moscato, S.; Wong, C.-P.; Tentzeris, M.M. A novel strain sensor based on 3D printing technology and 3D antenna design. In Proceedings of the 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 981–986. [Google Scholar]
- Yang, H.; Leow, W.R.; Chen, X. 3D printing of flexible electronic devices. Small Methods 2018, 2, 1700259. [Google Scholar] [CrossRef] [Green Version]
- Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28, 4449–4454. [Google Scholar] [CrossRef]
- Han, T.; Kundu, S.; Nag, A.; Xu, Y. 3D Printed Sensors for Biomedical Applications: A Review. Sensors 2019, 19, 1706. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wu, X.; Guo, X.; Kong, B.; Zhang, M.; Qian, X.; Mi, S.; Sun, W. The boom in 3D-printed sensor technology. Sensors 2017, 17, 1166. [Google Scholar] [CrossRef]
- Li, K.; Wei, H.; Liu, W.; Meng, H.; Zhang, P.; Yan, C. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology 2018, 29, 185501. [Google Scholar] [CrossRef]
- Nag, A.; Feng, S.; Mukhopadhyay, S.; Kosel, J.; Inglis, D. 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens. Actuators A Phys. 2018, 280, 525–534. [Google Scholar] [CrossRef]
- Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 2018, 10, 629. [Google Scholar] [CrossRef] [Green Version]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Wu, P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 2017, 4, 694–700. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, Y.T.; Cho, S.; Song, W.J.; Moon, S.; Park, C.G.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, K.; Liu, W.G.; Meng, H.; Zhang, P.X.; Yan, C.Y. 3D Printing of Free-Standing Stretchable Electrodes with Tunable Structure and Stretchability. Adv. Eng. Mater. 2017, 19, 1700341. [Google Scholar] [CrossRef]
- Frutiger, A.; Muth, J.T.; Vogt, D.M.; Mengüç, Y.; Campo, A.; Valentine, A.D.; Walsh, C.J.; Lewis, J.A. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 2015, 27, 2440–2446. [Google Scholar] [CrossRef]
- Zhuo, B.; Chen, S.; Zhao, M.; Guo, X. High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro-structured by 3-D printed mold. IEEE J. Electron Devices Soc. 2017, 5, 219–223. [Google Scholar] [CrossRef]
- Khosla, A.; Shah, S.; Shiblee, M.N.I.; Mir, S.H.; Nagahara, L.A.; Thundat, T.; Shekar, P.K.; Kawakami, M.; Furukawa, H. Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. Sci. Rep. 2018, 8, 12313. [Google Scholar] [CrossRef] [Green Version]
- Frazier, W.E. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. Cirp Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Mannsfeld, S.C.; Tee, B.C.; Stoltenberg, R.M.; Chen, C.V.H.; Barman, S.; Muir, B.V.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef]
- Yeo, J.C.; Yap, H.K.; Xi, W.; Wang, Z.; Yeow, C.H.; Lim, C.T. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. 2016, 1, 1600018. [Google Scholar] [CrossRef]
- Lee, J.; Emon, M.O.F.; Vatani, M.; Choi, J.-W. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors. Smart Mater. Struct. 2017, 26, 035043. [Google Scholar] [CrossRef]
- Kamat, A.M.; Pei, Y.; Kottapalli, A.G. Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials 2019, 9, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nag, A.; Afasrimanesh, N.; Feng, S.; Mukhopadhyay, S.C. Strain induced graphite/PDMS sensors for biomedical applications. Sens. Actuators A 2018, 271, 257–269. [Google Scholar] [CrossRef]
- Nag, A.; Alahi, M.E.E.; Feng, S.; Mukhopadhyay, S.C. IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators A Phys. 2019, 286, 43–50. [Google Scholar] [CrossRef]
- Chan, H.N.; Chen, Y.; Shu, Y.; Chen, Y.; Tian, Q.; Wu, H. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluid. 2015, 19, 9–18. [Google Scholar] [CrossRef]
- Heger, Z.; Zitka, J.; Cernei, N.; Krizkova, S.; Sztalmachova, M.; Kopel, P.; Masarik, M.; Hodek, P.; Zitka, O.; Adam, V. 3D-printed biosensor with poly (dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis 2015, 36, 1256–1264. [Google Scholar] [CrossRef]
- Hwang, Y.; Paydar, O.H.; Candler, R.N. Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. Sens. Actuators A Phys. 2015, 234, 65–71. [Google Scholar] [CrossRef]
- Lee, H.B.; Kim, Y.W.; Yoon, J.; Lee, N.K.; Park, S.-H. 3D customized and flexible tactile sensor using a piezoelectric nanofiber mat and sandwich-molded elastomer sheets. Smart Mater. Struct. 2017, 26, 045032. [Google Scholar] [CrossRef]
- He, Y.; Xue, G.-H.; Fu, J.-Z. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci. Rep. 2014, 4, 6973. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Ranzani, T.; Liu, H.; Nefti-Meziani, S.; Althoefer, K.; Menciassi, A. Soft and stretchable sensor using biocompatible electrodes and liquid for medical applications. Soft Robot. 2015, 2, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.; Li, Y.; Zan, X.; Liao, K.; Xu, R.; Duan, H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv. Funct. Mater. 2012, 22, 2487–2494. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Mei, D.; Zhu, W. Highly flexible tactile sensor with interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites. J. Mater. Chem. C 2019, 7, 8669–8679. [Google Scholar] [CrossRef]
- Truby, R.L.; Katzschmann, R.K.; Lewis, J.A.; Rus, D. Soft Robotic Fingers with Embedded Ionogel Sensors and Discrete Actuation Modes for Somatosensitive Manipulation. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019; pp. 322–329. [Google Scholar]
- Shih, B.; Drotman, D.; Christianson, C.; Huo, Z.; White, R.; Christensen, H.I.; Tolley, M.T. Custom soft robotic gripper sensor skins for haptic object visualization. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 494–501. [Google Scholar]
- Tee, B.C.K.; Chortos, A.; Dunn, R.R.; Schwartz, G.; Eason, E.; Bao, Z. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434. [Google Scholar] [CrossRef]
- Hu, C.-F.; Su, W.-S.; Fang, W. Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. J. Micromech. Microeng. 2011, 21, 115012. [Google Scholar] [CrossRef]
- Han, C.-J.; Chiang, H.-P.; Cheng, Y.-C. Using micro-molding and stamping to fabricate conductive polydimethylsiloxane-based flexible high-sensitivity strain gauges. Sensors 2018, 18, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampath, P.; De Silva, E.; Sameera, L.; Udayanga, I.; Amarasinghe, R.; Weragoda, S.; Mitani, A. Development of a Conductive Polymer Based Novel 1-DOF Tactile Sensor with Cylindrical Arch Spring Structure Using 3D Printing Technology. Sensors 2019, 19, 318. [Google Scholar] [CrossRef] [Green Version]
- Vogt, D.M.; Park, Y.-L.; Wood, R.J. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 2013, 13, 4056–4064. [Google Scholar] [CrossRef] [Green Version]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Zhang, H.; Kent, N.J.; Diamond, D.; D Gilchrist, M. 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines 2019, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Vatani, M.; Engeberg, E.D.; Choi, J.-W. Conformal direct-print of piezoresistive polymer/nanocomposites for compliant multi-layer tactile sensors. Addit. Manuf. 2015, 7, 73–82. [Google Scholar] [CrossRef]
- Dargahi, J.; Najarian, S. Advances in tactile sensors design/manufacturing and its impact on robotics applications–a review. Ind. Robot Int. J. 2005, 32, 268–281. [Google Scholar] [CrossRef]
- Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A Phys. 2012, 179, 17–31. [Google Scholar] [CrossRef]
- De Silva, A.; Sampath, W.; Sameera, N.; Udayanga, T.; Amarasinghe, Y.; Weragoda, V.; Mitani, A. Design and development of a novel 3D printed 1-DOF tactile sensor with conductive polymer based sensing element. In Proceedings of the SENSORS, 2016 IEEE, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Liu, C.-X.; Choi, J.-W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009, 19, 085019. [Google Scholar] [CrossRef]
- Hwang, Y.; Paydar, O.H.; Candler, R.N. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuators A Phys. 2015, 226, 137–142. [Google Scholar] [CrossRef]
- Emon, M.O.F.; Choi, J.-W. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires. Sensors 2017, 17, 656. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, A.; Fassler, A.; Usiak, C.; Majidi, C. Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 2013, 29, 6194–6200. [Google Scholar] [CrossRef]
- Park, Y.-L.; Majidi, C.; Kramer, R.; Bérard, P.; Wood, R.J. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 2010, 20, 125029. [Google Scholar] [CrossRef] [Green Version]
- King, P.H.; Jones, G.; Morgan, H.; de Planque, M.R.; Zauner, K.-P. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab A Chip 2014, 14, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Cook, B.S.; Fang, Y.; Tentzeris, M.M. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci. Rep. 2016, 6, 35111. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, A.; Werkman, P.; Welleweerd, M.; Wolterink, G.; Eijking, B.; Delamare, J.; Sanders, R.; Krijnen, G.J. Embedded sensing: integrating sensors in 3-D printed structures. J. Sens. Sens. Syst. 2018, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Park, J.; Suh, J.-h.; Kim, M.; Jeong, Y.; Park, I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators A Phys. 2017, 263, 493–500. [Google Scholar] [CrossRef]
- Zhuo, B.; Chen, S.; Guo, X. Micro structuring polydimethylsiloxane elastomer film with 3D printed mold for low cost and high sensitivity flexible capacitive pressure sensor. In Proceedings of the 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, Japan, 28 February–2 March 2017; pp. 148–149. [Google Scholar]
- Leal-Junior, A.G.; Marques, C.; Ribeiro, M.R.; Pontes, M.J.; Frizera, A. FBG-embedded 3-D printed ABS sensing pads: The impact of infill density on sensitivity and dynamic range in force sensors. IEEE Sens. J. 2018, 18, 8381–8388. [Google Scholar] [CrossRef]
- Chizari, K.; Daoud, M.A.; Ravindran, A.R.; Therriault, D. 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small 2016, 12, 6076–6082. [Google Scholar] [CrossRef]
- Kennedy, Z.C.; Christ, J.F.; Evans, K.A.; Arey, B.W.; Sweet, L.E.; Warner, M.G.; Erikson, R.L.; Barrett, C.A. 3D-printed poly (vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform. Nanoscale 2017, 9, 5458–5466. [Google Scholar] [CrossRef]
- Schmitz, M.; Khalilbeigi, M.; Balwierz, M.; Lissermann, R.; Mühlhäuser, M.; Steimle, J. Capricate: A fabrication pipeline to design and 3D print capacitive touch sensors for interactive objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 8 November 2015; pp. 253–258. [Google Scholar]
- Sato, J.; Sekine, T.; Yi-Fei, W.; Takeda, Y.; Matsui, H.; Kumaki, D.; Dos Santos, F.D.; Miyabo, A.; Tokito, S. Ferroelectric Polymer-based Fully Printed Flexible Strain Rate Sensors and Their Application for Human Motion Capture. Sens. Actuators A Phys. 2019, 295, 93–98. [Google Scholar] [CrossRef]
- Kumar, K.S.; Chen, P.-Y.; Ren, H. A Review of Printable Flexible and Stretchable Tactile Sensors. Research 2019, 2019, 3018568. [Google Scholar]
- Alshammari, A.S.; Alenezi, M.R.; Lai, K.; Silva, S. Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater. Lett. 2017, 189, 299–302. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Jiang, K.; Shen, G. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 2019, 26, 176–198. [Google Scholar] [CrossRef]
- Parameswaran, C.; Gupta, D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Converg. 2019, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Cui, T. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosens. Bioelectron. 2010, 25, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, A.; de Villoria, R.G.; Viana, J.; Pontes, A.; Wardle, B.; Rocha, L.A. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites. Nanoscale 2013, 5, 4847–4854. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Peng, Q.; Ding, Y.; Lin, Z.; Wang, C.; Li, Y.; Xu, F.; Li, J.; Yuan, Y.; He, X. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. Acs Nano 2015, 9, 8933–8941. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Kim, D.-I.; Nguyen, M.T.; Muhammad, S.; Yoon, W.-S.; Lee, N.-E. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 2015, 15, 177–185. [Google Scholar] [CrossRef]
- Comina, G.; Suska, A.; Filippini, D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab A Chip 2014, 14, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lorenzelli, L.; Dahiya, R. Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on flexible substrates. In Proceedings of the 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble, France, 30 June–3 July 2014; pp. 1–4. [Google Scholar]
- 3D Sensors Market—Forecast (2019–2024). Available online: https://www.industryarc.com/Report/244/global-3D-sensor-market-analysis-report.html (accessed on 23 January 2020).
- Printed Sensor Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024. Available online: https://www.transparencymarketresearch.com/printed-sensor-market.html (accessed on 23 January 2020).
- 3D Printed Sensors Could Be The Key to a Seamless Internet of Things. Available online: https://3dprint.com/257331/3d-printed-sensors-could-be-the-key-to-a-seamless-internet-of-things/ (accessed on 23 January 2020).
- 3D Printing 2019-2029: Technology and Market Analysis. Available online: https://www.idtechex.com/en/research-report/3d-printing-2019-2029-technology-and-market-analysis/666 (accessed on 23 January 2020).
- 3D Printing Market Size, Share & Trends Analysis Report. Available online: https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis (accessed on 23 January 2020).
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017, 3, 1600260. [Google Scholar] [CrossRef]
- Global Markets for 3D Printing. Available online: https://www.bccresearch.com/market-research/instrumentation-and-sensors/global-markets-for-3d-printing.html (accessed on 23 January 2020).
- Demand for Printed Sensors. Available online: https://www.prnewswire.com/news-releases/global-printed-sensors-market-to-surpass-12-billion-by-2022---demand-for-printed-sensors-is-rising-from-consumer-electronics-automotive--building-automation-industries---research-and-markets-300447958.html (accessed on 23 January 2020).
Electrode Material | Substrate Material | Advantages | Application | Ref. |
---|---|---|---|---|
Graphite | PDMS |
| Low-force sensing, tactile sensing | [35] |
Gold, Ag/AgCl | PDMS |
| Cell and tissue diagnostics | [27] |
Silver nanowires | PDMS |
| Strain sensing | [36] |
Single-Walled Carbon Nanotubes (SWCNTs) | PDMS |
| Tactile sensing | [37] |
Hydrogel | Polyethylene |
| Tactile sensing, electronic skins | [38] |
Silver trifluoroacetate | poly(styrene-b-butadiene-b-styrene) |
| Vibrational sensing | [39] |
Multi-Walled Carbon Nanotubes (MWCNTs) | PDMS |
| Wearable electronic devices | [40] |
Conductive fluid | Silicone elastomer Dragonskin 10 |
| Strain sensing | [41] |
Copper, Polyethylene terethaphlate, Indium titanium oxide | PDMS |
| Human physiological signals, pressure sensing of wrist pulse | [42] |
Carbon fiber | PDMS |
| 4-point sensing measurement | [43] |
Sensor Materials | Reliability | Scalability of the Mold(Minimum) | Lifetime | Ref. |
---|---|---|---|---|
Carbon particles, PDMS | High | 200 microns |
| [65] |
Carbon black, silicon dioxide | High reliability and repeatability in response with a maximum standard deviation of 0.157 V. | 10 mm |
| [66] |
Stainless-steel CL 201ES powder | High reliability in the fabrication due to selective laser sintering process. | 0.1 mm |
| [69] |
PDMS | Medium, due to surface roughness and replication fidelity. | 100 microns |
| [75] |
MWCNTs, photo-polymer | Medium lifetime due to the restrictions of the wires from the circuit board during the movement of the car. | 80 mm |
| [76] |
Sensor Materials | Application | Advantages | Limitation | Ref. |
---|---|---|---|---|
Graphite, PDMS | Low force sensing, phosphate sensing | Highly flexible, capacitive, multifunctional in nature | Not very small in size, not selective in nature. | [35] |
2-[[(Butylamino)carbonyl] oxy]ethyl acrylate, 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4), MWCNTs | Tactile sensing | High sensitivity, high electrical conductivity | Variation of sensitivity with limited mobility of polymer chains and ion liquid domain. | [49] |
Graphene, PDMS | Flow sensing | High resolution, high aspect ratio, high gauge factor, high sensitivity | Not small in size, high wt.% of graphene required to form the sensor. | [50] |
PDMS | Reduction of stress concentrations | The capability of multi-directional object transfer, | Limited miniaturization of the prototype. | [55] |
Reduced graphene oxide, manganese oxide, platinum | Detection of extracellular H2O2 from human liver cancer cells | Broad linear dynamic range, high sensitivity, selectivity, long stability, good reproducibility | Difficult to take off the freestanding nanoparticles from the template. | [59] |
Graphene, silicone rubber | Tactile sensing | High electrical conductivity, high gauge factor | High sensitivity for low force. | [60] |
Carbon particles, PDMS | Strain sensing | High piezoresistive coefficient | Non-uniform gauge factor. | [65] |
Stainless-steel CL 20ES powder | Monitor nitrate concentrations | High flatness of the prototypes, cost-effective, fast prototyping, flexibility in the design | Limited precision and surface finish. | [69] |
MWCNTs, photopolymer | Piezoresistive sensing in 3D printed tires | High electrical conductivity and flexibility, high sensitivity | Restriction of the movement of the car due to the intertwining of wires of the circuit board. | [76] |
PDMS | Transfer of osmotic water | High reproducibility, combined electrical and optical access | Requirement of 48 h to form a device-to-device cycle, cannot be used for a high amount of droplets. | [79] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Feng, S.; Nag, A.; Afsarimanesh, N.; Han, T.; Mukhopadhyay, S.C. Recent Progress in 3D Printed Mold-Based Sensors. Sensors 2020, 20, 703. https://doi.org/10.3390/s20030703
He S, Feng S, Nag A, Afsarimanesh N, Han T, Mukhopadhyay SC. Recent Progress in 3D Printed Mold-Based Sensors. Sensors. 2020; 20(3):703. https://doi.org/10.3390/s20030703
Chicago/Turabian StyleHe, Shan, Shilun Feng, Anindya Nag, Nasrin Afsarimanesh, Tao Han, and Subhas Chandra Mukhopadhyay. 2020. "Recent Progress in 3D Printed Mold-Based Sensors" Sensors 20, no. 3: 703. https://doi.org/10.3390/s20030703
APA StyleHe, S., Feng, S., Nag, A., Afsarimanesh, N., Han, T., & Mukhopadhyay, S. C. (2020). Recent Progress in 3D Printed Mold-Based Sensors. Sensors, 20(3), 703. https://doi.org/10.3390/s20030703