CO2 and O2 Detection by Electric Field Sensors
<p>(<b>a</b>) Frame Shape electrodes, (<b>b</b>) electrode system with characteristic capacitance (V<sub>Tx</sub>: Tx electrode voltage; V<sub>Rx</sub>: Rx electrode voltage; C<sub>RxTx</sub>: capacitance between the receive and transmit electrodes; C<sub>TxG</sub>: capacitance of the transmit (Tx) electrode to the system ground; C<sub>RxG</sub>: capacitance of the receive (Rx) electrode to the system ground; C<sub>H</sub>: capacitance between the receive electrode and the hand (earth ground); e<sub>Rx</sub>: Rx electrode; e<sub>Tx</sub>: Tx electrode).</p> "> Figure 2
<p>Measurement setup.</p> "> Figure 3
<p>Schematic representation of the sensing mechanism and transduction.</p> "> Figure 4
<p>Raw sensor responses are shown: functionalized and non-functionalized sensors were exposed to different CO<sub>2</sub> and O<sub>2</sub> concentrations with a fixed relative humidity (RH) level of 50%. Each measurement lasted 2 minutes and each recovery phase lasted 5 minutes.</p> "> Figure 5
<p>Sensor response to CO<sub>2</sub>: calibration data points were fitted using linear models reported in <a href="#sensors-20-00668-t001" class="html-table">Table 1</a>. Each error bar has been calculated with mean value and standard deviation based on five measurements.</p> "> Figure 6
<p>Sensor response to O<sub>2</sub>: calibration data points were fitted using linear models reported in <a href="#sensors-20-00668-t002" class="html-table">Table 2</a>. Each error bar has been calculated with mean value and standard deviation based on five measurements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- For CO2, resolution ranges from about 0.8% at 50% RH to about 0.006% at 90% RH
- For O2, resolution ranges from about 0.2% at 50% RH to about 0.05% at 75% RH
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zompanti, A.; Santonico, M.; Vollero, L.; Grasso, S.; Sabatini, A.; Mereu, F.; D’Amico, A.; Pennazza, G. A Gas Sensor with BLE connectivity for Wearable Applications. Proceedings 2018, 2, 765. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-T.; Akoto-Ampaw, P.-J.; Elbaccouch, M.; Hurrey, M.L.; Wallen, S.L.; Grant, C.S. Quartz Crystal Microbalance (QCM) in High-Pressure Carbon Dioxide (CO2): Experimental Aspects of QCM Theory and CO2 Adsorption. Langmuir 2004, 20, 3665–3673. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhao, Y.; Du, X.; Chu, Y.; Zhang, S.; Huang, J. Gas Sensors Based on Nano/Microstructured Organic Field-Effect Transistors. Small 2019, 15, 1805196. [Google Scholar] [CrossRef]
- Gas Sensing Solution. Available online: https://www.gassensing.co.uk/product/cozir-co2-sensor/, (accessed on 16 July 2019).
- Lang, H.P.; Ramseyer, J.P.; Grange, W.; Braun, T.; Schmid, D.; Hunziker, P.; Jung, C.; Hegner, M.; Gerber, C. An Artificial Nose Based on Microcantilever Array Sensors. J. Physics: Conf. Ser. 2007, 61, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Yoon, I.; Eom, G.; Lee, S.; Kim, B.K.; Kim, S.K.; Lee, H.J. A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems. Sensors 2019, 19, 1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliu, F.; Della Pergola, R. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sens. Actuators B Chem. 2018, 258, 1117–1124. [Google Scholar] [CrossRef]
- Braun, A.; Wichert, R.; Kuijper, A.; Fellner, D.W. Capacitive proximity sensing in smart environments. J. Ambient. Intell. Smart Environ. 2015, 7, 483–510. [Google Scholar] [CrossRef] [Green Version]
- Haghi, M.; Stoll, R.; Thurow, K. A Low-Cost, Standalone, and Multi-Tasking Watch for Personalized Environmental Monitoring. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 2015, 15, 31392–31427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackle environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2019, 699, 134279. [Google Scholar] [CrossRef]
- Microchip. Available online: http://ww1.microchip.com/downloads/en/devicedoc/40001716c.pdf (accessed on 16 July 2019).
- Santonico, M.; Pennazza, G.; Grasso, S.; D’Amico, A.; Bizzarri, M. Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study. Sensors 2013, 13, 16625–16640. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, H.-J.; Choung, M.-G. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chem. 2011, 129, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Jones, A. Indoor air quality and health. Atmospheric Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Popov, T.A. Human exhaled breath analysis. Ann. Allergy Asthma Immunol. 2011, 106, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Knoche, W. Chemical Reactions of CO2 in Water. In Proceedings of the Proceedings in Life Sciences; Springer Science and Business Media LLC, Regensburg, Germany, 17–20 April 1979; pp. 3–11. [Google Scholar]
- Neethirajan, S.; Jayas, D.S.; Sadistap, S. Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioproc. Tech. 2009, 2, 115–121. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Zompanti, A.; Grasso, S.; D’Amico, A. Electronic Interface for a Gas Sensor System Based on 32 MHz QCMs: Design and Calibration. IEEE Sens. J. 2017, 18, 1419–1426. [Google Scholar] [CrossRef]
- De Vincentis, A.; Pennazza, G.; Santonico, M.; Vespasiani-Gentilucci, U.; Galati, G.; Gallo, P.; Picardi, A. Breath-print analysis by e-nose may refine risk stratification for adverse outcomes in cirrhotic patients. Liver Int. 2017, 37, 242–250. [Google Scholar] [CrossRef] [PubMed]
50% RH | 65% RH | 75% RH | 80% RH | 90% RH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | Resolution | Sensitivity | Resolution | Sensitivity | Resolution | Sensitivity | Resolution | Sensitivity | Resolution | |
%CO2 | [V/%] | [%] | [V/%] | [%] | [V/%] | [%] | [V/%] | [%] | [V/%] | [%] |
5 | 1.76 × 10−5 | 3.73 × 10−1 | 2.57 × 10−5 | 2.55 × 10−1 | 5.24 × 10−5 | 1.81 × 10−2 | 1.49 × 10−4 | 5.42 × 10−3 | 4.14 × 10−4 | 6.32 × 10−3 |
10 | 1.52 × 10−5 | 4.32 × 10−1 | 2.50 × 10−5 | 2.62 × 10−1 | 4.31 × 10−5 | 2.20 × 10−2 | 1.38 × 10−4 | 5.84 × 10−3 | 4.14 × 10−4 | 6.32 × 10−3 |
15 | 1.28 × 10−5 | 5.13 × 10−1 | 2.44 × 10−5 | 2.70 × 10−1 | 3.38 × 10−5 | 2.81 × 10−2 | 1.28 × 10−4 | 6.33 × 10−3 | - | - |
20 | 1.04 × 10−5 | 6.32 × 10−1 | 2.37 × 10−5 | 2.77 × 10−1 | 2.45 × 10−5 | 3.88 × 10−2 | 1.17 × 10−4 | 6.91 × 10−3 | - | - |
25 | 7.98 × 10−6 | 8.23 × 10−1 | 2.30 × 10−5 | 2.85 × 10−1 | 1.52 × 10−5 | 6.26 × 10−2 | - | - | - | - |
VNoise [V] | 6.56 × 10−6 | 7.91 × 10−6 | 9.50 × 10−7 | 8.08 × 10−7 | 2.61 × 10−6 |
50% RH | 65% RH | 75% RH | 80% RH | |||||
---|---|---|---|---|---|---|---|---|
Sensitivity | Resolution | Sensitivity | Resolution | Sensitivity | Resolution | Sensitivity | Resolution | |
%O2 | [V/%] | [%] | [V/%] | [%] | [V/%] | [%] | [V/%] | [%] |
5.0 | 9.07 × 10−6 | 1.66 × 10−1 | 1.46 × 10−5 | 6.21 × 10−2 | 3.51 × 10−5 | 5.03 × 10−2 | 6.82 × 10−5 | 2.27 × 10−1 |
10.0 | 8.61 × 10−6 | 1.74 × 10−1 | 1.34 × 10−5 | 6.76 × 10−2 | 3.42 × 10−5 | 5.16 × 10−2 | 5.53 × 10−5 | 2.81 × 10−1 |
15.0 | 8.15 × 10−6 | 1.84 × 10−1 | 1.22 × 10−5 | 7.41 × 10−2 | 3.34 × 10−5 | 5.29 × 10−2 | 4.24 × 10−5 | 3.66 × 10−1 |
20.0 | 7.70 × 10−6 | 1.95 × 10−1 | 1.10 × 10−5 | 8.21 × 10−2 | 3.25 × 10−5 | 5.43 × 10−2 | 2.95 × 10−5 | 5.26 × 10−1 |
VNoise [V] | 1.50 × 10−6 | 9.05 × 10−7 | 1.76 × 10−6 | 1.55 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santonico, M.; Zompanti, A.; Sabatini, A.; Vollero, L.; Grasso, S.; Di Mezza, C.; Pennazza, G. CO2 and O2 Detection by Electric Field Sensors. Sensors 2020, 20, 668. https://doi.org/10.3390/s20030668
Santonico M, Zompanti A, Sabatini A, Vollero L, Grasso S, Di Mezza C, Pennazza G. CO2 and O2 Detection by Electric Field Sensors. Sensors. 2020; 20(3):668. https://doi.org/10.3390/s20030668
Chicago/Turabian StyleSantonico, Marco, Alessandro Zompanti, Anna Sabatini, Luca Vollero, Simone Grasso, Carlo Di Mezza, and Giorgio Pennazza. 2020. "CO2 and O2 Detection by Electric Field Sensors" Sensors 20, no. 3: 668. https://doi.org/10.3390/s20030668
APA StyleSantonico, M., Zompanti, A., Sabatini, A., Vollero, L., Grasso, S., Di Mezza, C., & Pennazza, G. (2020). CO2 and O2 Detection by Electric Field Sensors. Sensors, 20(3), 668. https://doi.org/10.3390/s20030668