A Cycle Slip Detection Framework for Reliable Single Frequency RTK Positioning
<p>Central and non-central <math display="inline"><semantics> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </semantics></math> distribution for six degrees of freedom.</p> "> Figure 2
<p>Probability density function (PDF) of the unbiased and biased normal distributions in the local test.</p> "> Figure 3
<p>Flowchart for cycle slip (CS) detection and reliable positioning using the detection, identification, and adaptation (DIA) approach.</p> "> Figure 4
<p>Rover receiver trajectory for dataset 1 (<b>left</b>) and dataset 2 (<b>right</b>).</p> "> Figure 5
<p>Satellite visibility plot for dataset 2.</p> "> Figure 6
<p>MDB for Dataset 1, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>External reliability assessment for Dataset 1, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p><span class="html-italic">w</span>-Test values for PRN 17 (dataset 1), <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>MDB for Dataset 2 for varying values of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>%</mo> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>The number of visible satellites for Dataset 2.</p> "> Figure 11
<p>External reliability assessment for Dataset 2. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>%</mo> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p><span class="html-italic">w</span>-Test values for PRN 3 (Dataset 2).</p> ">
Abstract
:1. Introduction
2. CS Detection for Single-Frequency RTK Positioning
2.1. Single Frequency RTK Model
- = change in DD code-phase observable
- = change in DD carrier-phase observable
- = size vector for change in baseline such that
- = size vector of unit vector
- = size diagonal matrix of wavelength
2.2. Least Squares Adjustment
2.3. Detection, Identification, and Adaptation (DIA) Approach
2.3.1. Detection
2.3.2. Identification
2.3.3. Adaptation
3. Reliable Positioning
3.1. Internal Reliability
3.2. External Reliability
4. Experimental Setup, Results, and Discussion
4.1. Data Collection
4.2. Choice of Parameters
4.3. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Teunissen, P.J.G.; Montenbruck, O. Springer Handbook of Global Navigation Satellite Systems; Springer Nature: Basel, Switzerland, 2017; ISBN 978-3-319-42926-7. [Google Scholar]
- Wellenhof, B.H.; Lichtenegger, H.; Wasle, E. GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More; Springer: NewYork, NY, USA, 2007; ISBN 9783211730126. [Google Scholar]
- Langley, R.B. Innovation: Cycle Slips. GPS World 2014, 25, 64–69. [Google Scholar]
- Karaim, M.; Karamat, T.B.; Noureldin, A.; El-Shafie, A. GPS Cycle Slip Detection and Correction at Measurement Level. Br. J. Appl. Sci. Technol. 2014, 4, 4239–4251. [Google Scholar] [CrossRef]
- Des Dorides, C. (Ed.) GNSS User Technology Report; European GNSS Agency: Luxembourg, 2018; ISBN 9789292060299.
- Murrian, M.J.; Gonzalez, C.W.; Humphreys, T.E.; Pesyna, K.M.; Shepard, D.P.; Kerns, A.J. Low-cost precise positioning for automated vehicles. GPS World 2016, 27, 32–39. [Google Scholar]
- Odolinski, R.; Teunissen, P.J.G. Low-cost, high-precision, single-frequency GPS–BDS RTK positioning. GPS Solut. 2017, 21, 1315–1330. [Google Scholar] [CrossRef]
- Tsakiri, M.; Sioulis, A.; Piniotis, G. The use of low-cost, single-frequency GNSS receivers in mapping surveys. Surv. Rev. 2018, 50, 46–56. [Google Scholar] [CrossRef]
- Farooq, S.Z.; Yang, D.; Ada, E.N.J. CS detection and correction techniques for RTK positioning using single-frequency GNSS receivers: Trends and comparison. IET Radar Sonar Navig. 2019, 13, 1857–1866. [Google Scholar] [CrossRef]
- Rizos, C. Quality Isuues in Real-Time GPS Positioning; International Association of Geodesy: Birmingham, UK, 1999. [Google Scholar]
- Cross, P.A.; Hawksbee, D.J.; Nicolai, R. Quality measures for differential GPS positioning. Hydrogr. J. 1994, 72, 17–22. [Google Scholar]
- Abousalem, M.A.; McLellan, J.F.; Krakiwsky, E.J. New Technique for Quality Control in GPS Kinematic Positioning. In Proceedings of the 1994 IEEE Position, Location and Navigation Symposium, Las Vegas, NV, USA, 11–15 April 1994; pp. 621–628. [Google Scholar]
- Pope, A.J. NOAA Technical Report NOS 65 NGS 1; The Statistics of Residuals and The Detection of Outliers: Rockville, MD, USA, 1976.
- Baarda, W. A Testing Procedure for Use in Geodetic Networks; Publications on Geodesy: Delft, The Netherlands, 1968; Volume 2, 97p. [Google Scholar]
- Teunissen, P.J.G. Adjustment Theory: An Introduction, 1st ed.; Delft University Press: Delft, The Netherlands, 2006; ISBN 978-90-6562-215-0. [Google Scholar]
- Leick, A.; Rapoport, L.B.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 9781118675571. [Google Scholar]
- Baarda, W. Statistical Concepts in Geodesy; Netherlands Geoddetic Comm; Publications on Geodesy: Delft, The Netherlands, 1967; Volume 2. [Google Scholar]
- Kuusniemi, H. User-Level Reliability and Quality Monitoring in Satellite-Based Personal Navigation; Tampere University of Technology: Tampere, Finland, 2005. [Google Scholar]
- Angrisano, A.; Gioia, C.; Gaglione, S.; Del Core, G. GNSS reliability testing in signal-degraded scenario. Int. J. Navig. Obs. 2013, 2013, 870365. [Google Scholar] [CrossRef]
- Innac, A.; Bhuiyan, M.Z.H.; Soderholm, S.; Kuusniemi, H.; Gaglione, S. Reliability testing for multiple GNSS measurement outlier detection. In Proceedings of the The European Navigation Conference—ENC 2016, Helsinki, Finland, 30 May–2 June 2016. [Google Scholar]
- Salzmann, M. Least Squares Filtering and Testing for Geodetic Navigation Application; Publication on Geodesy: Delft, The Netherlands, 1993; Volume 218. [Google Scholar]
- Kirkko-Jaakkola, M.; Traugott, J.; Odijk, D.; Collin, J.; Sachs, G.; Holzapjel, F. A RAIM approach to GNSS outlier and cycle slip detection using L1 carrier phase time-differences. In Proceedings of the IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, Tampere, Finland, 7–9 October 2009; pp. 273–278. [Google Scholar]
- Teunissen, P.J.G. Quality Control and GPS. In GPS for Geodessy; Teunissen, P.J.G., Kleusberg, A., Eds.; Springer: Heidelberg, Germany, 1998; ISBN 978-3-642-72013-0. [Google Scholar]
- Cross, P.A. Advanced Least Squares Applied to Position-Fixing; University of East London School of Surveying: London, UK, 1994. [Google Scholar]
- Teunissen, P.J.G. Quality control in integrated navigation systems. IEEE Aerosp. Electron. Syst. Mag. 1990, 5, 35–41. [Google Scholar] [CrossRef]
- Carcanague, S. Real-Time Geometry-Based Cycle Slip Resolution Technique for Single-Frequency PPP and RTK. In Proceedings of the 25th International Technical Meeting of the Satelitte Division of the (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 1136–1148. [Google Scholar]
- Lin, S.-G.; Yu, F.-C. Cycle slips detection algorithm for low cost single frequency GPS RTK positioning. Surv. Rev. 2013, 45, 206–214. [Google Scholar] [CrossRef]
- Fujita, S.; Saito, S.; Yoshihara, T. Cycle Slip Detection and Correction Methods with Time-Differenced Model for Single Frequency GNSS Applications. Trans. Inst. Syst. Control Inf. Eng. 2013, 26, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, L.B. Compressive sensing approach for the cycle slips detection, isolation, and correction. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the ION (ION GNSS 2014), Tampa, FL, USA, 8–12 September 2014; pp. 2602–2610. [Google Scholar]
- Zangeneh-Nejad, F.; Amiri-Simkooei, A.R.; Sharifi, M.A.; Asgari, J. Cycle slip detection and repair of undifferenced single-frequency GPS carrier phase observations. GPS Solut. 2017, 21, 1593–1603. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Jiang, W.; Zhou, X.; Yuan, P. A New Cycle Slip Detection and Repair Method for Single-Frequency GNSS Data. J. Navig. 2018, 71, 1492–1510. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Multi-GNSS: Principles & Applications; Lecture Notes 151847; Beihang University: Beijing, China, 2018. [Google Scholar]
- Blewitt, G. Basics of the GPS Technique: Observation Equations; Geodesy Applied GPS: Newcastle, UK, 1997; pp. 1–46. [Google Scholar]
- Yang, L.; Wang, J.; Knight, N.L.; Shen, Y. Outlier separability analysis with a multiple alternative hypotheses test. J. Geod. 2013, 87, 591–604. [Google Scholar] [CrossRef]
- Teunissen, P.J. Testing Theory: An introduction, 2nd ed.; Delft University Press: Delft, The Netherlands, 2006. [Google Scholar]
- Lehmann, R.; Lösler, M. Multiple Outlier Detection: Hypothesis Tests versus Model Selection by Information Criteria. J. Surv. Eng. 2016, 142, 04016017. [Google Scholar] [CrossRef] [Green Version]
- Rofatto, V.F.; Matsuoka, M.T.; Klein, I.; Veronez, M.R.; Bonimani, M.L.; Lehmann, R. A half-century of Baarda’s concept of reliability: A review, new perspectives, and applications. Surv. Rev. 2018. [Google Scholar] [CrossRef]
- Hewitson, S.; Wang, J. GNSS receiver autonomous integrity monitoring (RAIM) for Multiple Outliers. J. Navig. 2006, 4, 47–54. [Google Scholar]
- Kim, D.; Langley, R.B. Quality Control Techniques and Issue in GPS Applications: Stochastic Modelling and Reliability Test. In Proceedings of the International Symposium on GPS/GNSS (the 8th GNSS Workshop), Jeju Island, Korea, 7–9 November 2001. [Google Scholar]
- Lee, J.K.; Lee, J.O.; Kim, J.O. New quality control algorithm based on GNSS sensing data for a bridge health monitoring system. Sensors 2016, 16, 774. [Google Scholar] [CrossRef] [Green Version]
- Kavouras, M. On the Detection of Outliers and the Determination of Reliability in Geodetic Networks; University of New Brunswick-Fredericton: Fredericton, NB, Canada, 1982. [Google Scholar]
- Teunissen, P.J.G. Internal Reliability of Single Frequency GPS Data. Artif. Satell. 1997, 32, 64–73. [Google Scholar]
- Su, X.L.; Zhan, X.Q.; Niu, M.C.; Zhang, Y.H. Receiver autonomous integrity monitoring availability and fault detection capability comparison between BeiDou and GPS. J. Shanghai Jiaotong Univ. 2014, 19, 313–324. [Google Scholar] [CrossRef]
- Hewitson, S.; Wang, J. GNSS receiver autonomous integrity monitoring (RAIM) performance analysis. GPS Solut. 2006, 10, 155–170. [Google Scholar] [CrossRef]
- Google Earth Pro. version 7.3.2.5776. © 2019 Google LLC. Available online: https://www.google.com/earth/ (accessed on 20 November 2019).
- Estey, L.; Wier, S. Teqc Tutorial: Basics of Teqc Use and Teqc Products 2014; 2014 UNAVCO Inc.: Boulder, CO, USA, 2014. [Google Scholar]
- Space Weather Live: Real-Time Auroal and Solar Activity. Available online: https://www.spaceweatherlive.com/en/archive/ (accessed on 20 November 2019).
- Trimble Trimble GNSS Planning Online. Available online: https://www.gnssplanning.com/#/settings (accessed on 31 July 2019).
- Karaim, M.O. Real-Time Cycle-Slip Detection and Correction for Land Vehicle Navigation Using Inertial Aiding. Master’s Thesis, Queen’s University Kingston, Ontario, ON, Canada, 2013. [Google Scholar]
S.No. | Step | Parameter | Procedure |
---|---|---|---|
1 | Choose | Done once at the design stage | |
2 | Determine | Redundancy | Calculated from number of visible satellites |
3 | Determine | Equation (23) | |
4 | Find | Monogram [14] | |
5 | Determine | Equation (18) |
Dataset | Date (DD-MM-YY) | Day of Year | Number of Epochs | Baseline Length (Meters) | Visible Satellites (PRN) | Reference Satellite (PRN) |
---|---|---|---|---|---|---|
1 | 27-07-2019 | 208 | 258 | 3 to 66 | 1,3,8,11,17,18,19,22,28 | 28 |
2 | 31-07-2019 | 212 | 906 | 0.5 to 140 | 1,3,8,11,17,18,22,28,30 | 1 |
Redundancy | ||||
---|---|---|---|---|
7 | 0.02 | 4.765 | 0.1 | 7.041 |
9 | 0.035 | 5.411 | 0.125 | 7.493 |
11 | 0.05 | 5.892 | 0.15 | 7.901 |
13 | 0.06 | 6.163 | 0.175 | 8.278 |
15 | 0.07 | 6.409 | 0.2 | 8.634 |
17 | 0.08 | 6.634 | 0.25 | 9.299 |
SV | ||||
---|---|---|---|---|
MDB Epoch 150 (Cycles) | Mean MDB (Cycles) | MDB Epoch 150 (Cycles) | Mean MDB (Cycles) | |
1 | 0.994 | 0.994 | 0.822 | 0.822 |
3 | 1.373 | 1.376 | 1.136 | 1.138 |
8 | 1.236 | 1.234 | 1.022 | 1.021 |
11 | 0.959 | 0.959 | 0.793 | 0.793 |
17 | 1.032 | 1.032 | 0.854 | 0.855 |
18 | 1.123 | 1.123 | 0.929 | 0.929 |
19 | 1.454 | 1.453 | 1.202 | 1.202 |
22 | 0.952 | 0.952 | 0.787 | 0.788 |
SV | ||||||
---|---|---|---|---|---|---|
MDB Epoch 13 (Cycles) | MDB Epoch 450 (Cycles) | Mean MDB (Cycles) | MDB Epoch 13 (Cycles) | MDB Epoch 450 (Cycles) | Mean MDB (Cycles) | |
3 | 1.1973 | 1.164 | 1.163 | 0.9902 | 0.962 | 0.963 |
8 | 1.2701 | 1.280 | 1.284 | 1.0504 | 1.062 | 1.059 |
11 | 0 | 0.954 | 0.968 | 0 | 0.801 | 0.789 |
17 | 1.6028 | 1.544 | 1.549 | 1.3256 | 1.281 | 1.277 |
18 | 1.0235 | 0.996 | 0.993 | 0.8465 | 0.821 | 0.823 |
22 | 1.0024 | 0.988 | 0.988 | 0.8290 | 0.817 | 0.817 |
28 | 1.0053 | 1.026 | 1.022 | 0.8728 | 0.846 | 0.848 |
30 | 1.1922 | 1.216 | 1.231 | 0.9860 | 1.004 | 1.006 |
SV | Epoch | CS Introduced in PRN 3 | CS Introduced in PRN 11 | ||
---|---|---|---|---|---|
Residual | w-Test | Residual | w-Test | ||
PRN 3 | 449 | −0.0343 | 0.1524 | −0.0343 | 0.1524 |
450 | 0.3548 | 2.8005 | 0.2150 | 0.2617 | |
PRN 8 | 449 | 0.0671 | 0.0872 | −0.067 | 0.0872 |
450 | 0.1631 | 0.9327 | 0.1348 | 0.3346 | |
PRN 11 | 449 | −0.1334 | 0.4538 | −0.1334 | 0.4538 |
450 | −0.0944 | 0.3007 | 0.6576 | 2.8105 | |
PRN 17 | 449 | −0.0340 | 0.2049 | −0.0340 | 0.2049 |
450 | 0.0428 | 0.8047 | 0.2563 | 0.7351 | |
PRN 18 | 449 | −0.0623 | 0.0383 | −0.0623 | 0.0385 |
450 | −0.0214 | 0.1300 | 0.0171 | 0.9653 | |
PRN 22 | 449 | −0.0407 | 0.0910 | −0.0407 | 0.0910 |
450 | −0.2876 | 1.4620 | 0.1296 | 0.2869 | |
PRN 28 | 449 | −0.0377 | 0.1127 | −0.0377 | 0.1127 |
450 | 0.0748 | 0.7290 | 0.0195 | 0.9795 | |
PRN 30 | 449 | −0.0937 | 0.2775 | −0.0937 | 0.2775 |
450 | −0.2933 | 1.8384 | 0.1703 | 0.0549 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, S.Z.; Yang, D.; Ada, E.N.J. A Cycle Slip Detection Framework for Reliable Single Frequency RTK Positioning. Sensors 2020, 20, 304. https://doi.org/10.3390/s20010304
Farooq SZ, Yang D, Ada ENJ. A Cycle Slip Detection Framework for Reliable Single Frequency RTK Positioning. Sensors. 2020; 20(1):304. https://doi.org/10.3390/s20010304
Chicago/Turabian StyleFarooq, Salma Zainab, Dongkai Yang, and Echoda Ngbede Joshua Ada. 2020. "A Cycle Slip Detection Framework for Reliable Single Frequency RTK Positioning" Sensors 20, no. 1: 304. https://doi.org/10.3390/s20010304
APA StyleFarooq, S. Z., Yang, D., & Ada, E. N. J. (2020). A Cycle Slip Detection Framework for Reliable Single Frequency RTK Positioning. Sensors, 20(1), 304. https://doi.org/10.3390/s20010304